Sphingolipids play important signaling and structural roles in cells. Here, we find that during de novo sphingolipid biosynthesis, a toxic metabolite is formed with critical implications for cancer cell survival. The enzyme catalyzing the first step in this pathway, serine palmitoyltransferase complex (SPT), is upregulated in breast and other cancers. SPT is dispensable for cancer cell proliferation, as sphingolipids can be salvaged from the environment. However, SPT activity introduces a liability as its product, 3-ketodihydrosphingosine (3KDS), is toxic and requires clearance via the downstream enzyme 3-ketodihydrosphingosine reductase (KDSR). In cancer cells, but not normal cells, targeting KDSR induces toxic 3KDS accumulation leading to endoplasmic reticulum (ER) dysfunction and loss of proteostasis. Furthermore, the antitumor effect of KDSR disruption can be enhanced by increasing metabolic input (via high-fat diet) to allow greater 3KDS production. Thus, de novo sphingolipid biosynthesis entails a detoxification requirement in cancer cells that can be therapeutically exploited.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9552870 | PMC |
http://dx.doi.org/10.1016/j.celrep.2022.111415 | DOI Listing |
J Neurochem
January 2025
Nantes Université, INRAE, UMR 1280, Physiologie des Adaptations Nutritionnelles, Nantes, France.
Obesity leads to a number of health problems, including learning and memory deficits that can be passed on to the offspring via a developmental programming process. However, the mechanisms involved in the deleterious effects of obesity on cognition remain largely unknown. This study aimed to assess the impact of obesity on the production of sphingolipids (ceramides and sphingomyelins) in the brain and its relationship with the learning deficits displayed by obese individuals.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT, 59717, USA.
We hypothesized that daily exercise promotes joint health by upregulating anti-inflammatory mediators via adaptive molecular and metabolic changes in the infrapatellar fat pad (IFP). We tested this hypothesis by conducting time-resolved analyses between 1 and 14 days of voluntary wheel running exercise in C57BL/6J mice. IFP structure and cellularity were evaluated by histomorphology, picrosirius red collagen staining, and flow cytometry analysis of stromal vascular fraction cells.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
January 2025
Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland.
The accumulation of ceramides and related metabolites has emerged as a pivotal mechanism contributing to the onset of age-related diseases. However, small molecule inhibitors targeting the ceramide synthesis pathway for clinical use are currently unavailable. We synthesized a safe and orally bioavailable inhibitor, termed ALT-007, targeting the rate-limiting enzyme of ceramide synthesis, serine palmitoyltransferase (SPT).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
Retinal degenerative diseases lead to irreversible vision loss due to photoreceptor cell death, driven by complex genetic and environmental factors. Ceramide, a sphingolipid metabolite, emerges as a critical mediator in the apoptotic cascade associated with retinal degeneration. Our previous work demonstrated L-Cycloserine's ability to protect photoreceptor-derived cells from oxidative stress by inhibiting the de novo ceramide pathway and thus prompting further investigation on its effect in the in vivo retina.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.
Sphingomyelin is an important member of the sphingolipid family and was first reported more than a century ago. It has been demonstrated that sphingomyelin plays a crucial role in compositing cell membranes and signaling pathways. Despite extensive functional studies on the sphingolipid metabolism pathway genes, one intriguing question remains: how does the emergence of these genes during evolution correlate with the acquisition of new functions in different species? By employing an evolutionary conservation analysis, the sequence of occurrence of biological processes during evolutionary history can be elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!