The objective of this case study is to report the endodontic treatment of a mandibular premolar with a C-shaped root canal configuration based on the use of cone-beam computed tomography (CBCT) as a diagnostic aid and in treatment planning. A 14-year-old patient was referred for endodontic treatment of tooth No. 21. Upon examination of the CBCT, C-shaped canal anatomy was verified. The chemical-mechanical preparation was carried out with a rotary file system (rotary files 25.08, 30.05, and 35.05) and the use of 2.5% sodium hypochlorite as an auxiliary chemical substance. Clinical and radiographic follow-up was performed 6 months and 1 year after endodontic treatment. A periapical radiolucency revealed a progressive reduction, suggesting the evolution of tissue repair. This case study confirms that to achieve a favorable prognosis of endodontic treatment, in-depth knowledge of the internal anatomy of the root canal system, along with its variations, is necessary. In this regard, CBCT is an important tool to assist in obtaining the correct diagnosis and understanding the anatomical complexity to be treated. Variations of C-shaped canals are challenging due to difficulties encountered during the stages of chemical-mechanical preparation and filling. Thus, means of enhancing disinfection are needed.

Download full-text PDF

Source

Publication Analysis

Top Keywords

endodontic treatment
20
cone-beam computed
8
computed tomography
8
treatment mandibular
8
mandibular premolar
8
case study
8
root canal
8
chemical-mechanical preparation
8
treatment
6
endodontic
5

Similar Publications

Objectives: To evaluate cases of persistent apical periodontitis (PAP) and what are the imaging and clinical aspects that could be considered in the PAP diagnosis and in their treatment decision-making process.

Methodology: 423 patients with apical periodontitis at the time of non-surgical root canal treatment (NSRCT) were followed-up for at least 1 year. Periapical radiographic images were used to compare and determine periapical status at each time using the PAI scoring system.

View Article and Find Full Text PDF

Bio-Obturation for Internal Root Resorption in Contralateral Mandibular Molars: A Five-Year Case Study.

Cureus

December 2024

Endodontics, Iranian Center for Endodontic Research, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, IRN.

Internal root resorption (IRR) is a rare but complex condition characterized by progressive destruction of the internal dentin walls, typically resulting from chronic pulp inflammation, trauma, or infection. Managing apical IRR, particularly in teeth with extensive apical lesions, presents significant challenges due to the limitations of traditional root canal treatment (RCT) and obturation techniques. This report discusses the nonsurgical management of two contralateral mandibular first molars in a 49-year-old male patient, both exhibiting apical IRR and large endodontic lesions.

View Article and Find Full Text PDF

Background: Disinfection of the root canal system is a challenge to all clinicians, calcium hydroxide Ca(OH) one of the most popular intracanal medications used for this purpose, has some unwanted effects on dentine. This study aimed to investigate the antibiofilm effect of Nanochitosan (CSNPs) and Calcium hydroxide Ca(OH) intra canal medications and their effect on the microhardness and chemical structure of radicular dentine.

Methodology: A total of 52 extracted human mandibular premolars were used.

View Article and Find Full Text PDF

Bioinspired artificial antioxidases for efficient redox homeostasis and maxillofacial bone regeneration.

Nat Commun

January 2025

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China.

Reconstructing large, inflammatory maxillofacial defects using stem cell-based therapy faces challenges from adverse microenvironments, including high levels of reactive oxygen species (ROS), inadequate oxygen, and intensive inflammation. Here, inspired by the reaction mechanisms of intracellular antioxidant defense systems, we propose the de novo design of an artificial antioxidase using Ru-doped layered double hydroxide (Ru-hydroxide) for efficient redox homeostasis and maxillofacial bone regeneration. Our studies demonstrate that Ru-hydroxide consists hydroxyls-synergistic monoatomic Ru centers, which efficiently react with oxygen species and collaborate with hydroxyls for rapid proton and electron transfer, thus exhibiting efficient, broad-spectrum, and robust ROS scavenging performance.

View Article and Find Full Text PDF

Objectives: The aim of this technical report was to assess whether the "Radiological Report" tool within the Artificial Intelligence (AI) software Diagnocat can achieve a satisfactory level of performance comparable to that of experienced dentomaxillofacial radiologists in interpreting cone-beam CT scans.

Methods: Ten cone-beam CT scans were carefully selected and analyzed using the AI tool, and they were also evaluated by two dentomaxillofacial radiologists. Observations related to tooth numeration, alterations in dental crowns, roots, and periodontal tissues were documented and subsequently compared to the AI findings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!