With wide applications of image editing tools, forged images (splicing, copy-move, removal and etc.) have been becoming great public concerns. Although existing image forgery localization methods could achieve fairly good results on several public datasets, most of them perform poorly when the forged images are JPEG compressed as they are usually done in social networks. To tackle this issue, in this paper, a self-supervised domain adaptation network, which is composed of a backbone network with Siamese architecture and a compression approximation network (ComNet), is proposed for JPEG-resistant image forgery detection and localization. To improve the performance against JPEG compression, ComNet is customized to approximate the JPEG compression operation through self-supervised learning, generating JPEG-agent images with general JPEG compression characteristics. The backbone network is then trained with domain adaptation strategy to localize the tampering boundary and region, and alleviate the domain shift between uncompressed and JPEG-agent images. Extensive experimental results on several public datasets show that the proposed method outperforms or rivals to other state-of-the-art methods in image forgery detection and localization, especially for JPEG compression with unknown QFs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2022.3210379 | DOI Listing |
Sci Data
December 2024
Computer Vision Centre, Bellaterra, 08193, Spain.
This paper presents a new synthetic dataset of ID and travel documents, called SIDTD. The SIDTD dataset is created to help training and evaluating forged ID documents detection systems. Such a dataset has become a necessity as ID documents contain personal information and a public dataset of real documents can not be released.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Computer Engineering, Jinling Institute of Technology, Nanjing, Jiangsu, China.
With the advancement of deep forgery techniques, particularly propelled by generative adversarial networks (GANs), identifying deepfake faces has become increasingly challenging. Although existing forgery detection methods can identify tampering details within manipulated images, their effectiveness significantly diminishes in complex scenes, especially in low-quality images subjected to compression. To address this issue, we proposed a novel deep face forgery video detection model named Two-Stream Feature Domain Fusion Network (TSFF-Net).
View Article and Find Full Text PDFSensors (Basel)
November 2024
Guangxi Key Laboratory of Image and Graphic Intelligent Processing, Guilin University of Electronic Technology, Guilin 541004, China.
With the advancement of deepfake forgery technology, highly realistic fake faces have posed serious security risks to sensor-based facial recognition systems. Recent deepfake detection models mainly use binary classification models based on deep learning. Despite achieving high detection accuracy on intra-datasets, these models lack generalization ability when applied to cross-datasets.
View Article and Find Full Text PDFNeural Netw
February 2025
School of Software Engineering, Xi'an Jiaotong University, Xi'an 710048, China. Electronic address:
The continuous advancement of face forgery techniques has caused a series of trust crises, posing a significant menace to information security and personal privacy. In response, deep learning is being employed to develop effective detection methods to identify deepfake images and videos. Currently, most detection methods generally achieve satisfactory performance in intra-domain detection.
View Article and Find Full Text PDFIEEE Trans Image Process
October 2024
Recent advances in deep learning algorithms have shown impressive progress in image copy-move forgery detection (CMFD). However, these algorithms lack generalizability in practical scenarios where the copied regions are not present in the training images, or the cloned regions are part of the background. Additionally, these algorithms utilize convolution operations to distinguish source and target regions, leading to unsatisfactory results when the target regions blend well with the background.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!