Banana wilt caused by f. sp. () is the most destructive soil-borne fungal disease. Tropical race 4 ( TR4), one of the strains of , can infect many commercial cultivars, which represents a threat to global banana production. Currently, there are hardly any effective chemical fungicides to control the disease. To search for natural product-based fungicides for controlling banana wilt, we identified a novel strain sp. nov. (JCM 34965) from a marine soft coral, from which a bioactive compound, niphimycin C, was isolated using an activity-guided method. Niphimycin C exhibited a strong antifungal activity against TR4 with a value of 1.20 μg/mL for EC and obviously inhibited the mycelial growth and spore germination of TR4. It caused the functional loss of mitochondria and the disorder of metabolism of TR4 cells. Further study showed that niphimycin C reduced key enzyme activities of the tricarboxylic acid (TCA) cycle and the electron transport chain (ETC). It displayed broad-spectrum antifungal activities against the selected 12 phytopathogenic fungi. In pot experiments, niphimycin C reduced the disease indexes in banana plantlets and inhibited the infection of TR4 in roots. Hence, niphimycin C could be a promising agrochemical fungicide for the management of fungal diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.2c02810 | DOI Listing |
J Fungi (Basel)
December 2024
ICAR-National Research Center for Banana, Plant Pathology Division, Tiruchirappalli 620102, Tamil Nadu, India.
wilt of banana is a major production constraint in India, prompting banana growers to replace bananas with less remunerative crops. Effective disease management practices thus need to be developed and implemented to prevent further spread and damage caused by f. sp.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
This study characterized an endophytic fungus, DJE2023, isolated from healthy banana sucker of the cultivar (cv.) Dajiao. Its potential as a biocontrol agent against banana Fusarium wilt was assessed, aiming to provide a novel candidate strain for the biological control of the devastating disease.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
Embrapa Mandioca e Fruticultura, Rua Embrapa s/n CP 007, Bairro Chapadinha, Cruz das Almas 44380-000, Bahia, Brazil.
wilt is a soil borne fungal disease that has devastated banana production in plantations around the world. Most Cavendish-type bananas are susceptible to strains of f. sp.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, The Ministry of Agriculture and Rural Affairs International Joint Research Center for Agriculture, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China.
Fusarium wilt disease severely constrains the global banana industry. The highly destructive disease is caused by f. sp.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Isotope Bioscience Laboratory - ISOFYS, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000, Gent, Belgium.
The depletion of fertile topsoil presents a critical challenge in tropical mountain agroecosystems. Impacts are intensified during heavy storm events that strip unprotected topsoils and pose risks to downstream water ecosystems. To better understand such dynamics, we investigated an agricultural mountainous catchment located on the Democratic Republic of the Congo shore of Lake Kivu.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!