A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Simultaneous removal of organic and nitrogenous compounds in mature landfill leachate by a hybrid electro-oxidation-dialysis (EOD) system. | LitMetric

Simultaneous removal of organic and nitrogenous compounds in mature landfill leachate by a hybrid electro-oxidation-dialysis (EOD) system.

Environ Technol

Department of Environmental Engineering, Faculty of Civil, Planning, and Geo-Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia.

Published: February 2024

Electrochemical process has been widely applied to eliminate recalcitrant contaminants (i.e., organic and nitrogenous compounds) in landfill leachate. This study aimed to evaluate the performance of a hybrid electro-oxidation-dialysis (EOD) system to minimize organic and nitrogenous compounds through a synergistic process of electrochemical oxidation (EO) and electrodialysis (ED) as well as the dissolved organic matter was characterized in terms of fluorescent component and molecular weight distribution. The EOD was carried out using boron-doped diamond (BDD) and Pt alternately. The results have shown that pH adjustment to acidic conditions is beneficial to EO. At optimal pH (pH 4), BDD-based EO is superior to removing COD and up to around 56% and 64%, respectively. During EOD process, the lower current density at 20.83 mA cm is preferred for the recovery of nitrogenous ions (i.e. and ), especially for BDD-EOD. In addition, the dominant humic acid-like (HAL) and soluble microbial products-like (SMPL) substances in the mature leachate are mostly degraded to smaller molecules from 10 Da to 10 Da in both EOD processes. Overall, BDD-EOD favours indirect oxidation and has a higher energy consumption efficiency than Pt-EOD induced by direct oxidation for simultaneous removal of organic and nitrogenous compounds. BDD-EOD requires a lower total operation cost of around $2.33/m compared to Pt-EOD. It is concluded that the hybrid BDD-EOD process is technically feasible as a powerful pre-treatment approach to mature landfill leachate for refractory organics degradation and nitrogenous nutrients recovery.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2022.2130102DOI Listing

Publication Analysis

Top Keywords

organic nitrogenous
16
nitrogenous compounds
16
landfill leachate
12
simultaneous removal
8
removal organic
8
mature landfill
8
hybrid electro-oxidation-dialysis
8
electro-oxidation-dialysis eod
8
eod system
8
nitrogenous
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!