Importance: The optimal clinical management of central cord syndrome (CCS) remains unclear; yet this is becoming an increasingly relevant public health problem in the face of an aging population.

Objective: To provide a head-to-head comparison of the neurologic and functional outcomes of early (<24 hours) vs late (≥24 hours) surgical decompression for CCS.

Design, Setting, And Participants: Patients who underwent surgery for CCS (lower extremity motor score [LEMS] - upper extremity motor score [UEMS] ≥ 5) were included in this propensity score-matched cohort study. Data were collected from December 1991 to March 2017, and the analysis was performed from March 2020 to January 2021. This study identified patients with CCS from 3 international multicenter studies with data on the timing of surgical decompression in spinal cord injury. Participants were included if they had a documented baseline neurologic examination performed within 14 days of injury. Participants were eligible if they underwent surgical decompression for CCS.

Exposures: Early surgery was compared with late surgery.

Main Outcomes And Measures: Propensity scores were calculated as the probability of undergoing early compared with late surgery using the logit method and adjusting for relevant confounders. Propensity score matching was performed in a 1:1 ratio by an optimal-matching technique. The primary end point was motor recovery (UEMS, LEMS, American Spinal Injury Association [ASIA] motor score [AMS]) at 1 year. Secondary end points were Functional Independence Measure (FIM) motor score and complete independence in each FIM motor domain at 1 year.

Results: The final study cohort consisted of 186 patients with CCS. The early-surgery group included 93 patients (mean [SD] age, 47.8 [16.8] years; 66 male [71.0%]), and the late-surgery group included 93 patients (mean [SD] age, 48.0 [15.5] years; 75 male [80.6%]). Early surgical decompression resulted in significantly improved recovery in upper limb (mean difference [MD], 2.3; 95% CI, 0-4.5; P = .047), but not lower limb (MD, 1.1; 95% CI, -0.8 to 3.0; P = .30), motor function. In an a priori-planned subgroup analysis, outcomes were comparable with early or late decompressive surgery in patients with ASIA Impairment Scale (AIS) grade D injury. However, in patients with AIS grade C injury, early surgery resulted in significantly greater recovery in overall motor score (MD, 9.5; 95% CI, 0.5-18.4; P = .04), owing to gains in both upper and lower limb motor function.

Conclusions And Relevance: This cohort study found early surgical decompression to be associated with improved recovery in upper limb motor function at 1 year in patients with CCS. Treatment paradigms for CCS should be redefined to encompass early surgical decompression as a neuroprotective therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9520438PMC
http://dx.doi.org/10.1001/jamasurg.2022.4454DOI Listing

Publication Analysis

Top Keywords

central cord
8
cord syndrome
8
early late
4
late surgical
4
surgical decompression
4
decompression central
4
syndrome optimal
4
optimal clinical
4
clinical management
4
management central
4

Similar Publications

Background: We examined chronic gadolinium retention impact on gene expression in the mouse central nervous system (CNS) after injection of linear or macrocyclic gadolinium-based contrast agents (GBCAs).

Methods: From 05/2022 to 07/2023, 36 female mice underwent weekly intraperitoneal injections of gadodiamide (2.5 mmol/kg, linear), gadobutrol (2.

View Article and Find Full Text PDF

Primary Cerebral Lymphoma With Isolated Vitreoretinal and Cerebral Recurrences Without Meningeosis: A Case Report.

Cureus

December 2024

Treatment Resistant Schizophrenia Outpatient Clinic, Júlio de Matos Hospital, São José Local Health Unit, Clinical Academic Center of Lisbon, Lisbon, PRT.

Primary central nervous system lymphoma (PCNSL) is a diffuse, large B-cell lymphoma affecting the brain, spinal cord, leptomeninges, or eyes. A patient with a recurrence of a previous PCNSL manifesting as an isolated vitreoretinal disease without central nervous system (CNS) involvement and a second cerebral recurrence without vitreoretinal involvement has not yet been reported. The patient is an 86-year-old man with PCNSL of the left cerebellum diagnosed at the age of 82 years and treated with suboccipital trepanation and resection of the lesion followed by chemotherapy.

View Article and Find Full Text PDF

Transthyretin-Related Familial Amyloidosis Polyneuropathy with Spinal Cord Damage: A Case Report.

Int Med Case Rep J

January 2025

Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang Cerebrovascular Disease (Stroke) Clinical Medical Research Center, Regional Medical Center for Neurological Diseases of Henan Province, Luoyang, People's Republic of China.

Introduction: Transthyretin protein-related familial amyloidosis polyneuropathy (TTR-FAP) is an autosomal dominant genetic disease caused by mutations in the TTR gene. The disease is characterized primarily by peripheral and autonomic nerve damage. Disease progression is associated with frequent involvement of the heart, lungs, kidneys, eyes, and other organs.

View Article and Find Full Text PDF

Spinal cord injury (SCI) impairs the central nervous system and induces the myelin-sheath-deterioration because of reactive oxygen species (ROS), further hindering the recovery of function. Herein, the simultaneously emergency treatment and dynamic luminescence severity assessment (SETLSA) strategy is designed for SCI based on cerium (Ce)-doped upconversion antioxidant nanoenzymes (Ce@UCNP-BCH). Ce@UCNP-BCH can not only efficiently eliminate the SCI localized ROS, but dynamically monitor the oxidative state in the SCI repair process using a ratiometric luminescence signal.

View Article and Find Full Text PDF

what do reactive astrocytes (really) do?

Alzheimers Dement

December 2024

NYU Grossman School of Medicine, New York, NY, USA; NYU, New York City, NY, USA

Background: Astrocytes, a major glial cell in the central nervous system (CNS), can become reactive in response to inflammation or injury, and release toxic factors that kill specific subtypes of neurons. Over the past several decades, many groups report that reactive astrocytes are present in the brains of patients with Alzheimer’s disease, as well as several other neurodegenerative diseases. In addition, reactive astrocyte sub‐types most associated with these diseases are now reported to be present during CNS cancers of several types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!