In order to realize the value-added utilization of food waste (FW), the preparation of crayfish (Procambarus clarkii) feed by yeast fermentation was investigated. Firstly, the suitable fermentation condition was obtained through a single factor experiment as follows: the initial moisture of the FW was adjusted to 60% with bran and inoculated with a 2% yeast mixture (Saccharomyces cerevisiae, Candida utilis, and Yarrowia lipolytica, 3:2:1) followed by aerobic solid-state fermentation for 7 days. The crude protein and acid-soluble protein contents in the fermented feed were 25.14% and 5.16%, which were increased by 8% and 140.67%, respectively. The crude fat content was 0.74%, decreased by 68.29%. The content of antioxidant glutathione (571.78 μg/g) increased 63.33%, and the activities of protease and amylase increased nearly 9 and 3 times, respectively. The maximum degradation rates of aflatoxin B1, zearalenone, and deoxynivalenol were 63.83%, 77.52%, and 80.16%, respectively. The fermented feeds were evaluated by substituting (0%, 10%, 30%, 50%, and 100%) commercial diet for crayfish (30-day culture period). When the replacement proportion was 30%, the weight gain of crayfish reached 44.87% (initial body weight 13.98 ± 0.41 g), which was significantly increased by 10.25% compared with the control (p = 0.0005). In addition, the lysozyme and SOD enzyme activities in crayfish hepatopancreas were also increased significantly. Our findings suggest that yeast-fermented feed from FW can replace 30% of crayfish's conventional diet, which may improve crayfish's antioxidant capacity and enhance non-specific immunity by providing molecules such as glutathione.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-022-23100-xDOI Listing

Publication Analysis

Top Keywords

food waste
8
solid-state fermentation
8
crayfish
5
increased
5
bioconversion food
4
waste crayfish
4
feed
4
crayfish feed
4
feed solid-state
4
fermentation
4

Similar Publications

Foeniculum vulgare Miller bracts, revalorization of a local food waste.

Sci Rep

December 2024

Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084, Salerno, Italy.

This research aims at the valorization of fennel by-products from the Campania region (Southern Italy). A phytochemical characterization of the hydroalcoholic extracts (HEs) and of the essential oils (EOs) from edible and non-edible parts (waste) of Foeniculum vulgare Mill. was carried out using HRESIMS and GC-MS.

View Article and Find Full Text PDF

The garden dormouse (Eliomys quercinus) is a fat-storing mammal that undergoes annual periods of hibernation to mitigate the effects of food scarcity, low ambient temperatures, and reduced photoperiod that characterize winter. Like other hibernating species, this animal suppresses its metabolic rate by downregulating nonessential genes and processes in order to prolong available energy stores and limit waste accumulation throughout the season. MicroRNAs (miRNAs) are short, single-stranded, noncoding RNAs that bind to mRNA and mediate post-transcriptional suppression, making miRNA ideal for modulating widespread changes in gene expression, including global downregulation typified by metabolic rate depression.

View Article and Find Full Text PDF

Study on the structure and adsorption characteristics of the complex of modified Lentinus edodes stalks dietary fiber and tea polyphenol.

Food Chem

December 2024

School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun 130118, China. Electronic address:

The waste Lentinus edodes stalks from Lentinus edodes processing were used as raw materials by the steam explosion to prepare modified Lentinus edodes stalks dietary fiber and combined with tea polyphenols to form the SE-DF-tea polyphenols complex (SE-DF-TPC). The SE-DF-tea polyphenols mixture (SE-DF-TPM) was prepared according to the complex's optimal adsorption conditions. Fluorescence microscopy, Fourier transform infrared spectroscopy, particle size measurement, thermogravimetric analysis, and X-ray diffraction were used to analyze its structure, and the thermal stability of the complex and its adsorption capacity for lipids, cholesterol, and cholates were studied.

View Article and Find Full Text PDF

Dual-compartment-gate organic transistors for monitoring biogenic amines from food.

Biosens Bioelectron

December 2024

Department of Life Sciences, Università Degli Studi di Modena e Reggio Emilia, Via Campi 103, Modena, 41125, Italy; Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia (CTNSC), Via Fossato di Mortara 17-19, Ferrara, 44121, Italy.

According to the Food and Agriculture Organization of the United Nations (FAO) more than 14% of the world's food production is lost every year before reaching retail, and another 17% is lost during the retail stage. The use of the expiration date as the main estimator of the life-end of food products creates unjustified food waste. Sensors capable of quantifying the effective food freshness and quality could substantially reduce food waste and enable more effective management of the food chain.

View Article and Find Full Text PDF

Genes in microorganisms influence the biological processes in anaerobic digestion (AD). However, key genes involved in the four metabolic steps (hydrolysis, acidogenesis, acetogenesis, and methanogenesis) remain largely unexplored. This study investigated the abundance and distribution of key functional genes in full-scale anaerobic digesters processing food waste (FWDs) and municipal wastewater (MWDs) through 16S rRNA gene and shotgun metagenomic analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!