AI Article Synopsis

  • Discharging waste water from bauxite desilication poses environmental risks due to harmful residual ions and organic compounds, prompting the need for effective treatment.
  • A study analyzed eight waste water samples from five flotation plants in China, identifying Proteobacteria and Firmicutes as the dominant bacterial phyla involved in the microbial community.
  • Key genera such as Tepidicella, Paracoccus, Pseudomonas, and Exiguobacterium were found to possess the ability to biodegrade complex organic materials, offering insights for improving biological waste water treatment and discovering novel microorganisms for bauxite processing.

Article Abstract

Discharging waste water from the bauxite desilication process will bring potential environmental risk from the residual ions and organic compounds, especially hydrolyzed polyacrylamide. Characterization of the microbial community diversity in waste water plays an important role in the biological treatment of waste water. In this study, eight waste water samples from five flotation plants in China were investigated. The microbial community and functional profiles within the waste water were analyzed by a metagenomic sequencing method and associated with geochemical properties. The results revealed that Proteobacteria and Firmicutes were the dominant bacterial phyla. Both phylogenetical and clusters of orthologous groups' analyses indicated that Tepidicella, Paracoccus, Pseudomonas, and Exiguobacterium could be the dominant bacterial genera in the waste water from bauxite desilication process for their abilities to biodegrade complex organic compounds. The results of the microbial community diversity and functional gene compositions analyses provided a beneficial orientation for the biotreatment of waste water, as well as regenerative using of water resources. Besides, this study revealed that waste water from bauxite desilication process was an ideal ecosystem to find novel microorganisms, such as efficient strains for bio-desilication and bio-desulfurization of bauxite.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-022-23150-1DOI Listing

Publication Analysis

Top Keywords

waste water
36
microbial community
16
bauxite desilication
16
desilication process
16
water bauxite
12
water
10
waste
9
organic compounds
8
community diversity
8
dominant bacterial
8

Similar Publications

Liquid metals (LMs), i.e., metals and alloys that exist in a liquid state at room temperature, have recently attracted considerable attention owing to their electronic and rheological properties useful in various cutting-edge technologies.

View Article and Find Full Text PDF

The deammonification process is an efficient alternative to remove nitrogen from wastewater with a low carbon/nitrogen ratio. However, the reactor configuration and operational factors pose challenges for applications in treatment systems to remove nitrogen from municipal and industrial wastewater on a large scale. To address this gap, this study evaluated a new deammonification strategy using a single-stage membrane aerated biofilm reactor (MABR), operated with continuous flow, under different hydraulic retention times (HRT) in the post-treatment of poultry slaughterhouse wastewater with a low nitrogen load, similar to domestic wastewater.

View Article and Find Full Text PDF

Treated municipal wastewater effluent is an important pathway for Contaminants of Emerging Concern (CEC) to enter aquatic ecosystems. As the aging wastewater infrastructure in many industrialized countries requires upgrades or replacement, assessing new treatment technologies in the context of CEC effects may provide additional support for science-based resource management. Here, we used three lines of evidence, analytical chemistry, fish exposure experiments, and fish and water microbiome analysis, to assess the effectiveness of membrane bioreactor treatment (MBR) to replace traditional activated sludge treatment.

View Article and Find Full Text PDF

Sub-lethal exposures to bifenthrin impact stress responses and behavior of juvenile Chinook Salmon.

Environ Toxicol Chem

January 2025

Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, Yolo County, CA, 95616USA.

Juvenile Chinook Salmon (Oncorhynchus tshawytscha) populations have decreased substantially in the Sacramento-San Joaquin Delta (Delta) over the past decades, so considerably that two of the four genetically distinct runs are now listed in the Endangered Species Act. One factor responsible for this decline is the presence of contaminants in the Delta. Insecticides, used globally in agricultural, industrial, and household settings, have the potential to contaminate nearby aquatic systems through spray drift, runoff, and direct wastewater discharge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!