Biobanking the reproductive tissues or cells of animals preserves the genetic and reproductive ability of the species in long-term storage and promotes sharing of reproductive materials. In avian species, the primordial germ cell (PGC) is one of the most promising reproductive cells to be preserved in biobanks, due to self-renewal properties and direct access to the germ line mediated by PGC transfer. To conserve the genetic resource of local chicken breeds that are of conservation importance, we systematically isolated two types of pregonadal PGCs from chicken embryos-circulating and tissue PGCs. PGCs of individual embryos were separately isolated, cultured, and cryopreserved. Characteristics of cultured PGCs are described and evaluated. The efficiency of PGC isolation from individual embryos was 98.9% (660/667). In most cases, both matching circulating and tissue PGC lines were isolated from the same embryo (68.2%, 450/660), whereas the remaining lines were from a single source, being either tissue (30.6%, 202/660) or circulating (1.2%, 8/660). Efficient PGC isolation and proliferation can be expected in cultures of circulating PGCs (68.7% and 64.3%, respectively) and tissue PGCs (97.8% and 80.7%, respectively). Following cryopreservation, recovered cells sustained PGC identities including expression of chicken vasa homolog and deleted in azoospermia-like proteins and migration ability to recipient embryonic gonads. Culture conditions equally supported proliferation of circulating and tissue PGCs from both sexes. Combining tissue PGC culture in the regimen prevented 30.3% loss of PGC cultures in the case where circulating PGC culture was ineffective. Cultured circulating and tissue PGCs were similar in morphology, but optimal culture characteristics were different. We applied the approach of PGC isolation from blood and tissue origins on a wide scale and demonstrated its efficiency for biobanking chicken PGCs. The workflow can be operated effectively almost year-round in a tropical climate. It was also described in ample and practical details, which are suitable for adoption or optimization in other conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1089/bio.2022.0043DOI Listing

Publication Analysis

Top Keywords

tissue pgcs
16
pgc isolation
12
circulating tissue
12
pgc
10
pgcs
9
primordial germ
8
germ cell
8
tissue
8
individual embryos
8
tissue pgc
8

Similar Publications

Optimization of genome editing by CRISPR ribonucleoprotein for high efficiency of germline transmission of Sox9 in zebrafish.

N Biotechnol

January 2025

Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China. Electronic address:

Primordial germ cells (PGCs) are the first germline stem cells to emerge during early embryonic development and are essential for the propagation and survival of species. Genome editing creates mutagenesis possibilities in vivo, but the generation of precise mutations in PGCs is still challenging. Here, we report an optimized approach for highly efficient genome editing via introducing biallelic variations in early embryos in zebrafish.

View Article and Find Full Text PDF

Generation of transgenic chicken through ovarian injection.

Animal Model Exp Med

December 2024

Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China.

Background: Traditional DNA microinjection methods used in mammals are difficult to apply to avian species due to their unique reproductive characteristics. Genetic manipulation in chickens, particularly involving immature follicles within living ovaries, has not been extensively explored. This study seeks to establish an efficient method for generating transgenic chickens through ovarian injection, potentially bypassing the challenges associated with primordial germ cell (PGC) manipulation and fertilized egg microinjection.

View Article and Find Full Text PDF

The GhANT-GoPGF module regulates pigment gland development in cotton leaves.

Cell Rep

December 2024

National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan 475004, P.R. China. Electronic address:

Gossypium spp. pigment glands are a good model for studying plant secretory cavity structures. GoPGF (GOSSYPIUM PIGMENT GLAND FORMATION) is a well-characterized master transcription factor that controls gland formation in cotton; however, little is known about its transcriptional regulation.

View Article and Find Full Text PDF

Transient receptor potential a1b regulates primordial germ cell numbers and sex differentiation in developing zebrafish.

J Fish Biol

November 2024

Key Laboratory of Aquacultural Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China.

Temperature is a leading environmental factor determining the sex ratio of some animal populations, such as fish, amphibians, and reptiles. However, the underlying mechanism by which temperature affects gender is still poorly understood. Transient receptor potential a1b (Trpa1b) belongs to the ion channel family of transient receptor potentials and exhibits dual thermosensitivity to heat and cold.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers identified a specific population of Very Small Embryonic-Like Stem Cells (VSELs) in human postnatal tissues such as bone marrow, peripheral blood, and umbilical cord blood that can differentiate into various tissue stem cells.
  • Molecular analysis showed that these VSELs share similar characteristics with embryonic stem cells, including certain gene expressions and patterns of genetic imprinting.
  • Using single-cell RNA sequencing, the study found that these human VSELs also exhibit subpopulations related to germline development and are influenced by factors that control differentiation and immune response.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!