Cell chirality plays a critical role in the linkage between molecular chirality and the asymmetrical biological functions of body organs. However, enantioselective interactions between cell chirality and the extracellular environment are not yet fully understood. In this study, we investigated the effects of structurally chiral extracellular microenvironments on cellular alignments and differentiations. Twisted wrinkle-shaped chiral micropatterns were prepared using biaxial and asymmetric buckling methods, wherein structural handedness was determined from the orientation of the tilt angle between the first and second microwrinkles. Myoblasts were separately cultured on two enantiomeric chiral micropatterns in a mirror-reflected shape. Cells cultured on the left-handed chiral micropatterns preferred alignments along the direction of the second microwrinkle, with a relatively deeper valley than that of the first microwrinkle. The aligned cells on the left-handed pattern showed higher differentiation rates, as assessed by fusion indices and marker protein expression levels, than those cultured on right-handed chiral micropatterns. These results suggest that myoblasts exhibit enantioselective recognition of structurally chiral microenvironments, which can promote cellular alignments and differentiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.2c00480 | DOI Listing |
Adv Sci (Weinh)
December 2024
Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China.
Circularly polarized light (CPL) is inherently chiral and is regarded as one possible source for the origin of homochirality. Coincidentally, chiral metal nanoparticles have great prospects in asymmetric photochemical reactions since they can enhance the chiral light-matter interactions. Nonetheless, little is known about how the spin angular momentum of light competes with the chiral electromagnetic field in the vicinity of a chiral nanoparticle during the chiral induction and amplification process.
View Article and Find Full Text PDFJ Biomech
November 2024
Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY 12180, USA. Electronic address:
Cellular monolayers display various degrees of coordinated motion ranging from the small scale of just a few cells to large multi-cellular scales. This collective migration carries important physical cues for creating proper tissue morphology. Previous studies have demonstrated that the energetics of the epithelial monolayer show a linear variation with time in conjunction with an arrest in monolayer motion after confluency.
View Article and Find Full Text PDFSoft Matter
September 2024
Institute of Physics, Yerevan State University, 1 Alex Manoogian st., Yerevan 0025, Armenia.
Liquid crystal colloids manifest complex motion caused by external stimuli, but tunable and addressable control of microsized objects remains a challenge. This study aims to demonstrate light-driven trapping, transport, and sustained periodic motions of microparticles by employing liquid crystal films as a light-controllable colloidal platform. The diverse motions of microscopic particles result from Marangoni convection coupled with elastic deformations in free-surface liquid crystal films subjected to light beam heating.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2024
Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, People's Republic of China.
Chirality plays a crucial role in biology, as it is highly conserved and fundamentally important in the developmental process. To better understand the relationship between the chirality of individual cells and that of tissues and organisms, we develop a generalized mechanics model of chiral polarized particles to investigate the swirling dynamics of cell populations on substrates. Our analysis reveals that cells with the same chirality can form distinct chiral patterns on ring-shaped or rectangular substrates.
View Article and Find Full Text PDFAPL Bioeng
March 2024
Department of Natural Sciences, CASL, University of Michigan-Dearborn, Dearborn, Michigan 48128, USA.
Cell chirality is crucial for the chiral morphogenesis of biological tissues, yet its underlying mechanism remains unclear. Cell organelle polarization along multiple axes in a cell body, namely, apical-basal, front-rear, and left-right, is known to direct cell behavior such as orientation, rotation, and migration. Among these axes, the left-right bias holds significant sway in determining the chiral directionality of these behaviors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!