New homo-sesquiterpenes are accessible after conversion of presilphiperfolan-8β-ol synthase (BcBOT2) with cyclopropylmethyl analogs of farnesyl diphosphate, and this biotransformation is dependent on subtle structural refinements. Two of the three cyclisation products are homo variants of germacrene D and germacrene D-4-ol while the third product reported contains a new bicyclic backbone for which no analogue in nature has been described so far. The findings on diphosphate activation are discussed and rationalised by relaxed force constants and dissociation energies computed at the DFT level of theory.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2ob01279kDOI Listing

Publication Analysis

Top Keywords

cyclopropylmethyldiphosphates substrates
4
substrates sesquiterpene
4
sesquiterpene synthases
4
synthases experimental
4
experimental theoretical
4
theoretical homo-sesquiterpenes
4
homo-sesquiterpenes accessible
4
accessible conversion
4
conversion presilphiperfolan-8β-ol
4
presilphiperfolan-8β-ol synthase
4

Similar Publications

New homo-sesquiterpenes are accessible after conversion of presilphiperfolan-8β-ol synthase (BcBOT2) with cyclopropylmethyl analogs of farnesyl diphosphate, and this biotransformation is dependent on subtle structural refinements. Two of the three cyclisation products are homo variants of germacrene D and germacrene D-4-ol while the third product reported contains a new bicyclic backbone for which no analogue in nature has been described so far. The findings on diphosphate activation are discussed and rationalised by relaxed force constants and dissociation energies computed at the DFT level of theory.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!