Many eukaryotic transcripts contain upstream open reading frames (uORFs). Translated uORFs can inhibit the translation of main ORFs by imposing the need for reinitiation of translation. Translated uORFs can also lead to transcript degradation by the nonsense-mediated mRNA decay (NMD) pathway. In mammalian cells, translated uORFs were shown to target their transcripts to NMD if the uORFs were long (>23-32 amino acids), structured, or inhibit reinitiation. Reinitiation was shown to rescue uORF-containing mammalian transcripts from NMD. Much less is known about the significance of the length, structure, and reinitiation efficiency of translated uORFs for NMD targeting in plants. Although high-throughput studies suggested that uORFs do not globally reduce plant transcript abundance, it was not clear whether this was due to NMD-escape-permitting parameters of uORF recognition, length, structure, or reinitiation efficiency. We expressed in Arabidopsis reporter genes that included NDL2 5' untranslated region and various uORFs with modulation of the above parameters. We found that transcripts can escape NMD in plants even when they include efficiently translated uORFs up to 70 amino acids long, or structured uORFs, in the absence of reinitiation. These data highlight an apparent difference between the rules that govern the exposure of uORF-containing transcripts to NMD in mammalian and plant cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jxb/erac385 | DOI Listing |
Mol Ther Nucleic Acids
March 2025
Department of Paediatrics, University of Oxford, Headington, Oxford OX3 7TY, UK.
Upstream open reading frames (uORFs) are -regulatory motifs that are predicted to occur in the 5' UTRs of the majority of human protein-coding transcripts and are typically associated with translational repression of the downstream primary open reading frame (pORF). Interference with uORF activity provides a potential mechanism for targeted upregulation of the expression of specific transcripts. It was previously reported that steric block antisense oligonucleotides (ASOs) can bind to and mask uORF start codons to inhibit translation initiation, and thereby disrupt uORF-mediated gene regulation.
View Article and Find Full Text PDFRNA Biol
December 2025
Department of Urology, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, China.
Mutations in coding sequence and abnormal PKD1 expression levels contribute to the development of autosomal-dominant polycystic kidney disease, the most common genetic disorder. Regulation of PKD1 expression by factors located in the promoter and 3´ UTR have been extensively studied. Less is known about its regulation by 5´ UTR elements.
View Article and Find Full Text PDFGenomics
January 2025
Department of Clinical Laboratory of Sir Run-Run Shaw Hospital, and School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China. Electronic address:
X-ray irradiation induces widespread changes in gene expression. Positioned at the bottom of the central dogma, translational regulation responds swiftly to environmental stimuli, fine-tuning protein levels. However, the global view of mRNA translation following X-ray exposure remains unclear.
View Article and Find Full Text PDFEMBO J
January 2025
Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland.
Ribosomes scanning from the mRNA 5' cap to the start codon may initiate at upstream open reading frames (uORFs), decreasing protein biosynthesis. Termination at a uORF can lead to re-initiation, where 40S subunits resume scanning and initiate another translation event downstream. The noncanonical translation factors MCTS1-DENR participate in re-initiation at specific uORFs, but knowledge of other trans-acting factors or uORF features influencing re-initiation is limited.
View Article and Find Full Text PDFbioRxiv
October 2024
Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA.
Unlabelled: The integrated stress response (ISR) is an adaptive pathway hijacked by cancer cells to survive cellular stresses in the tumor microenvironment. ISR activation potently induces Programmed Death Ligand 1 (PD-L1), leading to suppression of anti-tumor immunity. Here we sought to uncover additional immune checkpoint proteins regulated by the ISR to elucidate mechanisms of tumor immune escape.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!