Krasch polysaccharide promotes adipose thermogenesis and decreases obesity by shaping the gut microbiota.

Food Funct

Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.

Published: October 2022

This study was designed to investigate the underlying mechanism of Krasch polysaccharide (ASKP) against obesity. Here, our results showed that ASKP considerably reduced body weight gain and metabolic disorders in high fat diet (HFD)-fed mice. 16S rRNA gene sequencing revealed that ASKP relieved the gut microbiota disorder caused by HFD and promoted the proliferation of probiotics such as and . Interestingly, the fecal levels of succinate, a microbial metabolite associated with adipose thermogenesis, were dramatically elevated by ASKP treatment in obese mice. Accordingly, ASKP promoted thermogenesis of brown adipose tissue (BAT) and browning of inguinal white adipose tissue (iWAT) of mice fed with a HFD, as revealed by the elevated expression of thermogenic marker genes (UCP1, CIDEA and PGC1α) in BAT and iWAT. Importantly, antibiotic treatment significantly decreased the ASKP-elevated fecal levels of succinate and further abolished the adipose thermogenesis effects of ASKP. Taken together, our results show that ASKP prevents obesity through iWAT browning and BAT activation, a mechanism that is dependent on the gut microbiota metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2fo02257eDOI Listing

Publication Analysis

Top Keywords

adipose thermogenesis
12
gut microbiota
12
krasch polysaccharide
8
fecal levels
8
levels succinate
8
adipose tissue
8
askp
7
adipose
5
polysaccharide promotes
4
promotes adipose
4

Similar Publications

Aims: Thermogenic adipocytes are able to dissipate energy as heat from lipids and carbohydrates through enhanced uncoupled respiration, due to UCP1 activity. PPAR family of transcription factors plays an important role in adipocyte biology. The purpose of this work was to characterize the role of PPARα and pemafibrate in the control of thermogenic adipocyte formation and function.

View Article and Find Full Text PDF

Metabolic dysfunction in mice with adipocyte specific ablation of the adenosine A2A receptor.

J Biol Chem

January 2025

Holman Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New Science Building, 435 E 30(th) Street, New York, NY, 10016, USA. Electronic address:

It has been well established that adenosine plays a key role in the control of inflammation through G protein coupled receptors and recently shown that it can regulate thermogenesis. Here we investigated the specific requirements of the adenosine A2A receptor (A2AR) in mature adipocytes for thermogenic functionality and metabolic homeostasis. We generated fat tissue specific adenosine A2A receptor knock-out mice to assess the influence of signaling through this receptor on brown and beige fat functionality, obesity, insulin sensitivity, inflammation and liver function.

View Article and Find Full Text PDF

Polycystic ovary syndrome (PCOS) is a complex disorder that significantly impacts female reproductive health and increases the risk of metabolic and reproductive diseases. Emerging evidence suggests that alterations in gut microbiota and their metabolic activities contribute to PCOS pathogenesis, although the underlying mechanisms remain elusive. In the current study, we found that patients with PCOS had altered metabolic profiles, particularly characterized by reduced levels of indole-3-propionic acid (IPA).

View Article and Find Full Text PDF

Bacterial artificial chromosome transgenic models, including most Cre-recombinases, enable potent interrogation of gene function in vivo but require rigorous validation as limitations emerge. Due to its high relevance to metabolic studies, we perform comprehensive analysis of the Ucp1-Cre line which is widely used for brown fat research. Hemizygotes exhibit major brown and white fat transcriptomic dysregulation, indicating potential altered tissue function.

View Article and Find Full Text PDF

PAS domain-containing serine/threonine-protein kinase (PASK) is a nutrient and energy sensor regulated by fasting/refeeding conditions in hypothalamic areas involved in controlling energy balance. In this sense, PASK plays a role in coordinating the activation/inactivation of AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) in response to fasting. PASK deficiency protects against the development of diet-induced obesity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!