In the market for next-generation energy storage, lithium-sulfur (Li-S) technology is one of the most promising candidates due to its high theoretical specific energy and cost-efficient ubiquitous active materials. In this study, this cell system was combined with a cost-efficient sustainable solvent-free electrode dry-coating process (DRYtraec®). So far, this process has been only feasible with polytetrafluoroethylene (PTFE)-based binders. To increase the sustainability of electrode processing and to decrease the undesired fluorine content of Li-S batteries, a renewable, biodegradable, and fluorine-free polypeptide was employed as a binder for solvent-free electrode manufacturing. The yielded sulfur/carbon dry-film cathodes were electrochemically evaluated under lean electrolyte conditions at coin and pouch cell level, using the state-of-the-art 1,2-dimethoxyethane/1,3-dioxolane electrolyte (DME/DOL) as well as the sparingly polysulfide-solvating electrolytes hexylmethylether (HME)/DOL and tetramethylene sulfone/1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TMS/TTE). These results demonstrated that the PTFE binder can be replaced by the biodegradable sericin as the cycle stability and performance of the cathodes was retained.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9828167PMC
http://dx.doi.org/10.1002/cssc.202201320DOI Listing

Publication Analysis

Top Keywords

solvent-free electrode
8
sustainable protein-based
4
protein-based binder
4
binder lithium-sulfur
4
lithium-sulfur cathodes
4
cathodes processed
4
processed solvent-free
4
solvent-free dry-coating
4
dry-coating method
4
method market
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!