The electronic characterization of the cyanuric acid both in gas phase and when embedded within an H-bonded scheme forming a monolayer on the Au(111) surface has been performed by means of X-ray Photoelectron Spectroscopy (XPS) and Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy. The experimental spectra at the N, O, and C -edges have been assigned with the support of DFT calculations, and the combination between theory and experiment has allowed to us investigate the effect of the H-bonding intermolecular interaction on the spectra. In particular, the H-bond formation in the monolayer leads to a quenching of the N 1s NEXAFS resonances associated with transitions to the sigma empty orbitals localized on the N-H portion of the imide group. On the other hand, the π* empty states remain substantially unperturbed. From a computational point of view, it has been shown that the DFT-TP scheme is not able to describe the N 1s NEXAFS spectra of these systems, and the configuration mixing has to be included, through the TDDFT approach in conjunction with the range-separated XC CAM-B3LYP functional, to obtain a correct reproduction of the N 1s core spectra.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9549465 | PMC |
http://dx.doi.org/10.1021/acs.jpca.2c04517 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!