Many chemical and biological processes involve phase separation; however, controlling this is challenging. Here, we demonstrate local phase separation using optical tweezers in a thermo-responsive ionic liquid/water solution. Upon near-infrared laser irradiation, a single droplet is formed at the focal spot. The droplet has a core consisting of highly concentrated ionic liquid. The mechanism of the core-shell droplet formation is discussed in view of the spatial distribution of optical and thermal potentials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2cc02699f | DOI Listing |
Int J Biol Macromol
January 2025
Department of Nutrition and Health, China Agricultural University, Beijing 100193, China. Electronic address:
The inherent propensity for aggregation necessitates the use of high concentrations of protein-polysaccharide nanoparticles to achieve stable Pickering emulsions. This study employed xanthan gum (XG) to mitigate the pronounced aggregation of zein nanoparticles by structure construction, thereby enhancing the emulsifying efficiency of zein/XG (Z/XG) nanoparticles. The Z/XG nanoparticles displayed significantly enhanced dispersity, with the absolute ζ-potential increasing from 6.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Applied Theoretical Physics - Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany.
The self-assembly of biological membraneless organelles can be mimicked by active droplets resulting from chemically fueled microphase separation. However, how the nonequilibrium, transient structure of these active droplets can be controlled through the physicochemical input parameters is not yet well understood. In our work, a chemically fueled two-state chemical reaction and subsequent droplet growth and decay are modeled with a reactive Brownian dynamics simulation in two spatial dimensions.
View Article and Find Full Text PDFAnal Chem
December 2024
State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
Droplet-based digital PCR has emerged as a powerful platform for nucleic acid-based detection. However, the formation of droplet compartments and the subsequent amplification process in oil present significant drawbacks: instability under harsh thermal conditions, high background fluorescent noise inside droplets, and major difficulty in supporting multistep assays. Alternatively, droplets made of a hydrogel, or other advanced materials, have been adopted and demonstrate promising improvement over conventional droplet-based platforms.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
Encapsulation of volatile organic compounds (VOCs) that could evaporate at a defined rate is of immense interest for application in emission reference materials (ERMs). Polyurethane/polyurea microcapsules with various VOC active ingredients (limonene, pinene, and toluene) were successfully produced by interfacial polymerization with Shirasu porous glass membrane emulsification in a size range between 10 and 50 μm. The effect of surfactant, VOC, monomer(s) type, and ratio has a great effect on the formulation process and morphology of capsules.
View Article and Find Full Text PDFMatter
October 2024
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138.
Mesenchymal stem cell (MSC) stands as a prominent choice in regenerative medicine, yet their therapeutic potential remains controversial due to challenges in maintaining lineage and viability. As directly injected MSCs are quickly cleared by the host immune system, entrapping viable cells in a 3D semi-permeable hydrogel matrix extends cell retention, showing great promise in enhancing therapeutic effect. However, the effects of hydrogel encapsulation on MSC subpopulations are not fully understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!