Background: We are all aware of day-to-day healthy stress, but, when sustained for long periods, stress is believed to lead to serious physical and mental health issues.
Materials And Methods: In this study, we investigated the potential effects of transcutaneous auricular vagus nerve stimulation (taVNS) on stress processing as reflected in the electrocardiogram (ECG)-derived biomarkers of stress adaptability. Stress reflecting biomarkers included a range of heart rate variability metrics: standard deviation of N-N intervals (SDNN), root mean squared of successive differences in heartbeat intervals (RMSSD), low-frequency component, high-frequency component and their ratio (LF, HF, and LF/HF).In addition, we created a machine learning model capable of distinguishing between the stimulated and nonstimulated conditions from the ECG-derive data from various subjects and states. The model consisted of a deep convolutional neural network, which was trained on R-R interval (RRI) data extracted from ECG and time traces of LF, HF, LF/HF, SDNN, and RMSSD.
Results: Only LF/HF ratio demonstrated a statistically significant change in response to stimulation. Although the LF/HF ratio is expected to increase during exposure to stress, we have observed that stimulation during exposure to stress counteracts this increase or even reduces the LF/HF ratio. This could be an indication that the vagus nerve stimulation decreases the sympathetic activation during stress inducement.Our Machine Learning model achieved an accuracy of 70% with no significant variations across the three states (baseline, stress, and recovery). However, training an analogous neural network to identify the states (baseline, stress, and recovery) proved to be unsuccessful.
Conclusion: Overall, in this study, we showed further evidence of the beneficial effect of taVNS on stress processing. Importantly we have also demonstrated the promising potential of ECG metrics as a biomarker for the development of closed-loop stimulation systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9508455 | PMC |
http://dx.doi.org/10.1089/bioe.2021.0033 | DOI Listing |
Eur Arch Otorhinolaryngol
January 2025
Audio-vestibular Medicine unit, department of Ear, Nose and throat, Faculty of Medicine, Assiut University, Assiut, Egypt.
Background: Subjective tinnitus is characterized by perception of sound in the absence of any external or internal acoustic stimuli. Many approaches have been developed over the years to treat tinnitus (medical and nonmedical). However, no consensus has been reached on the optimal therapeutic approach.
View Article and Find Full Text PDFPsychophysiology
January 2025
Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
The decline in noradrenergic (NE) locus coeruleus (LC) function in aging is thought to be implicated in episodic memory decline. Transcutaneous auricular vagus nerve stimulation (taVNS), which supports LC function, might serve to preserve or improve memory function in aging. However, taVNS effects are generally very heterogeneous, and it is currently unclear whether taVNS has an effect on memory.
View Article and Find Full Text PDFNeurocrit Care
January 2025
Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
Background: Intracranial hemorrhage (ICH) is a devastating stroke subtype with a high rate of mortality and disability. Therapeutic options available are primarily limited to supportive care and blood pressure control, whereas the surgical approach remains controversial. In this study, we explored the effects of noninvasive vagus nerve stimulation (nVNS) on hematoma volume and outcome in a rat model of collagenase-induced ICH.
View Article and Find Full Text PDFClin Auton Res
January 2025
Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Syllabova 19, Ostrava, 703 00, Czech Republic.
Epilepsy Res
January 2025
Consultant Neurologist, Dr. Kamakshi Memorial Hospital, Chennai, India.
Background: Epilepsy is a major neurological disorder, typically managed with Anti-Seizure Medication (ASM). Nevertheless, a substantial 30 % of patients did not respond satisfactorily to ASMs, classifying their condition as Drug-Resistant Epilepsy (DRE). Vagus Nerve Stimulation (VNS) was recommended as a potential solution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!