Background: Short-term prediction of COVID-19 epidemics is crucial to decision making. We aimed to develop supervised machine-learning algorithms on multiple digital metrics including symptom search trends, population mobility, and vaccination coverage to predict local-level COVID-19 growth rates in the UK.
Methods: Using dynamic supervised machine-learning algorithms based on log-linear regression, we explored optimal models for 1-week, 2-week, and 3-week ahead prediction of COVID-19 growth rate at lower tier local authority level over time. Model performance was assessed by calculating mean squared error (MSE) of prospective prediction, and naïve model and fixed-predictors model were used as reference models. We assessed real-time model performance for eight five-weeks-apart checkpoints between 1st March and 14th November 2021. We developed an online application (COVIDPredLTLA) that visualised the real-time predictions for the present week, and the next one and two weeks.
Results: Here we show that the median MSEs of the optimal models for 1-week, 2-week, and 3-week ahead prediction are 0.12 (IQR: 0.08-0.22), 0.29 (0.19-0.38), and 0.37 (0.25-0.47), respectively. Compared with naïve models, the optimal models maintain increased accuracy (reducing MSE by a range of 21-35%), including May-June 2021 when the delta variant spread across the UK. Compared with the fixed-predictors model, the advantage of dynamic models is observed after several iterations of update.
Conclusions: With flexible data-driven predictors selection process, our dynamic modelling framework shows promises in predicting short-term changes in COVID-19 cases. The online application (COVIDPredLTLA) could assist decision-making for control measures and planning of healthcare capacity in future epidemic growths.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9509378 | PMC |
http://dx.doi.org/10.1038/s43856-022-00184-7 | DOI Listing |
Int J Med Inform
December 2024
Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China. Electronic address:
Background: Solid organ transplantation (SOT) is vital for end-stage organ failure but faces challenges like organ shortage and rejection. Artificial intelligence (AI) offers potential to improve outcomes through better matching, success prediction, and automation. However, the evolution of AI in SOT research remains underexplored.
View Article and Find Full Text PDFChaos
January 2025
School of Public Health, Chongqing Medical University, Chongqing 400016, China.
The impact of resource allocation on the dynamics of epidemic spreading is an important topic. In real-life scenarios, individuals usually prioritize their own safety, and this self-protection consciousness will lead to delays in resource allocation. However, there is a lack of systematic research on the impact of resource allocation delay on epidemic spreading.
View Article and Find Full Text PDFJMIR Med Inform
January 2025
Medical Big Data Research Center, Chinese PLA General Hospital, Beijing, China.
Background: Machine learning models can reduce the burden on doctors by converting medical records into International Classification of Diseases (ICD) codes in real time, thereby enhancing the efficiency of diagnosis and treatment. However, it faces challenges such as small datasets, diverse writing styles, unstructured records, and the need for semimanual preprocessing. Existing approaches, such as naive Bayes, Word2Vec, and convolutional neural networks, have limitations in handling missing values and understanding the context of medical texts, leading to a high error rate.
View Article and Find Full Text PDFJ Comput Assist Tomogr
November 2024
From the Department of Medical Imaging, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin City, Jiangsu Province, China.
Objectives: The aims of the study are to predict lung function impairment in patients with connective tissue disease (CTD)-associated interstitial lung disease (ILD) through computed tomography (CT) quantitative analysis parameters based on CT deep learning model and density threshold method and to assess the severity of the disease in patients with CTD-ILD.
Methods: We retrospectively collected chest high-resolution CT images and pulmonary function test results from 105 patients with CTD-ILD between January 2021 and December 2023 (patients staged according to the gender-age-physiology [GAP] system), including 46 males and 59 females, with a median age of 64 years. Additionally, we selected 80 healthy controls (HCs) with matched sex and age, who showed no abnormalities in their chest high-resolution CT.
J Comput Assist Tomogr
November 2024
From the Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu Province, China.
Objectives: The aim of the study is to investigate the ability of preoperative CT (Computed Tomography)-based radiomics signature to predict microvascular invasion (MVI) of intrahepatic mass-forming cholangiocarcinoma (IMCC) and develop radiomics-based prediction models.
Materials And Methods: Preoperative clinical data, basic CT features, and radiomics features of 121 IMCC patients (44 with MVI and 77 without MVI) were retrospectively reviewed. The loading and display of CT images, delineation of the volume of interest, and feature extraction were performed using 3D Slicer.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!