Silicification of DNA origami structures increases their stability and provides chemical protection. Yet, it is unclear whether the whole DNA framework is embedded or if silica just forms an outer shell and how silicification affects the origami's internal structure. Employing in situ small-angle X-ray scattering (SAXS), we show that addition of silica precursors induces substantial condensation of the DNA origami at early reaction times by almost 10 %. Subsequently, the overall size of the silicified DNA origami increases again due to increasing silica deposition. We further identify the SAXS Porod invariant as a reliable, model-free parameter for the evaluation of the amount of silica formation at a given time. Contrast matching of the DNA double helix Lorentzian peak reveals silica growth also inside the origami. The less polar silica forming within the origami structure, replacing more than 40 % of the internal hydration water, causes a hydrophobic effect: condensation. DNA origami objects with flat surfaces show a strong tendency towards aggregation during silicification, presumably driven by the same entropic forces causing condensation. Maximally condensed origami displayed thermal stability up to 60 °C. Our studies provide insights into the silicification reaction allowing for the formulation of optimized reaction protocols.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9515200 | PMC |
http://dx.doi.org/10.1038/s41467-022-33083-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!