Background: Aggressive primary brain tumors such as glioblastoma are uniquely challenging to treat. The intracranial location poses barriers to therapy, and the potential for severe toxicity. Effective treatments for primary brain tumors are limited, and 5-year survival rates remain poor. Immune checkpoint inhibitor therapy has transformed treatment of some other cancers but has yet to significantly benefit patients with glioblastoma. Early phase trials of chimeric antigen receptor (CAR) T-cell therapy in patients with glioblastoma have demonstrated that this approach is safe and feasible, but with limited evidence of its effectiveness. The choices of appropriate target antigens for CAR-T-cell therapy also remain limited.
Methods: We profiled an extensive biobank of patients' biopsy tissues and patient-derived early passage glioma neural stem cell lines for GD2 expression using immunomicroscopy and flow cytometry. We then employed an approved clinical manufacturing process to make CAR- T cells from patients with peripheral blood of glioblastoma and diffuse midline glioma and characterized their phenotype and function in vitro. Finally, we tested intravenously administered CAR-T cells in an aggressive intracranial xenograft model of glioblastoma and used multicolor flow cytometry, multicolor whole-tissue immunofluorescence and next-generation RNA sequencing to uncover markers associated with effective tumor control.
Results: Here we show that the tumor-associated antigen GD2 is highly and consistently expressed in primary glioblastoma tissue removed at surgery. Moreover, despite patients with glioblastoma having perturbations in their immune system, highly functional GD2-specific CAR-T cells can be produced from their peripheral T cells using an approved clinical manufacturing process. Finally, after intravenous administration, GD2-CAR-T cells effectively infiltrated the brain and controlled tumor growth in an aggressive orthotopic xenograft model of glioblastoma. Tumor control was further improved using CAR-T cells manufactured with a clinical retroviral vector encoding an interleukin-15 transgene alongside the GD2-specific CAR. These CAR-T cells achieved a striking 50% complete response rate by bioluminescence imaging in established intracranial tumors.
Conclusions: Targeting GD2 using a clinically deployed CAR-T-cell therapy has a sound scientific and clinical rationale as a treatment for glioblastoma and other aggressive primary brain tumors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9516307 | PMC |
http://dx.doi.org/10.1136/jitc-2022-005187 | DOI Listing |
Blood Rev
January 2025
Department of Hematology, First Hospital of Jilin University, Changchun, Jilin, China. Electronic address:
Multiple myeloma (MM) remains incurable and patients eventually face the relapse/refractory dilemma. B cell maturation antigen (BCMA)-targeted immunotherapeutic approaches have shown great effectiveness in patients with relapsed/refractory MM, mainly including chimeric antigen receptor T cells (CAR-T), bispecific T cell engagers (TCEs), and antibody-drug conjugates (ADCs). However, their impact on long-term survival remains to be determined.
View Article and Find Full Text PDFMol Ther
January 2025
Leibniz Institute for Immunotherapy (LIT), Division of Genetic Immunotherapy, Regensburg, Germany. Electronic address:
A rapidly growing number of chimeric antigen receptors (CARs) is being translated into cell therapy for malignant and autoimmune diseases. While cancer cell-selective CAR targeting is undergoing continuous refinement, specific testing for overlooked recognition of healthy tissues is commonly not performed, which potentially results in underestimating of the risk of severe tissue damage upon CAR T cell application. Using the FcμR/IgM receptor/FAIM3/TOSO-specific CAR, designed to target chronic lymphocytic leukemia cells, we exemplarily outline a screen to uncover reactivities to healthy tissues and discuss the value of such pre-clinical testing to improve safety in CAR T cell application.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
TriArm Therapeutics, Niudun Road 200, 201203 Shanghai, China. Electronic address:
Background: The immunosuppressive microenvironment negatively affects the efficacy of chimeric antigen receptor T (CAR-T) cells in solid tumors. Fusion protein that combining extracellular domain of inhibitory checkpoint protein and the cytoplasmic domain of stimulatory molecule may improve the efficacy of CAR-T cells by reversing the suppressive signals.
Methods: To generate optimal PD1-TLR10 fusion proteins, PD1 extracellular domain and TLR10 intracellular domain were connected by transmembrane domain from PD1, CD28, or TLR10, respectively.
Adv Clin Exp Med
January 2025
Department of Rheumatology and Internal Medicine, Wroclaw Medical University, Poland.
Systemic lupus erythematosus (SLE) is a chronic, autoimmune inflammatory disease with a multisystem manifestation and a variety of clinical symptoms. Over the last decades, the prognosis and life expectancy of patients with SLE improved significantly due to the implementation of corticosteroids combined with immunosuppressive agents. Nevertheless, the use of these medications is often associated with the occurrence of serious side effects and additional deterioration of organ function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!