The most widespread nature-based solution for mitigating climate change is tree planting. When realized as forest restoration in historically forested biomes, it can efficiently contribute to the sequestration of atmospheric carbon and can also entail significant biodiversity and ecosystem service benefits. Conversely, tree planting in naturally open biomes can have adverse effects, of which water shortage due to increased evapotranspiration is among the most alarming ones. Here we assessed how soil texture affects the strength of the trade-off between tree cover and water balance in the forest-steppe biome, where the global pressure for afforestation is threatening with increasing tree cover above historical levels. Here we monitored vertical soil moisture dynamics in four stands in each of the most common forest types of lowland Hungary on well-drained, sandy (natural poplar groves, and Robinia and pine plantations) and on poorly drained, silty-clayey soils (natural oak stands and Robinia plantations), and neighboring grasslands. We found that forests on sand retain moisture in the topsoil (approx. 20 cm) throughout the year, but a thick dry layer develops below that during the vegetation period, significantly impeding groundwater recharge. Neighboring sandy grasslands showed an opposite pattern, with often dry topsoil but intact moisture reserves below, allowing deep percolation. In contrast, forests on silty-clayey soils did not desiccate lower soil layers compared neighboring grasslands, which in turn showed moisture patterns similar to sandy grasslands. We conclude that, in water-limited temperate biomes where landscape-wide water regime depends on deep percolation, soil texture should drive the spatial allocation of tree-based climate mitigation efforts. On sand, the establishment of new forests should be kept to a minimum and grassland restoration should be preferred. The trade-off between water and carbon is less pronounced on silty-clayey soils, making forest patches and wooded rangelands viable targets for both climate mitigation and ecosystem restoration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.158960DOI Listing

Publication Analysis

Top Keywords

tree planting
12
silty-clayey soils
12
water carbon
8
water-limited temperate
8
soil texture
8
tree cover
8
neighboring grasslands
8
sandy grasslands
8
deep percolation
8
climate mitigation
8

Similar Publications

Ecosystem functioning and management are primarily concerned with addressing climate change and biodiversity loss, which are closely linked to carbon stock and species diversity. This research aimed to quantify forest understory (shrub and herb) diversity, tree biomass and carbon sequestration in the Binsar Wildlife Sanctuary. Using random sampling methods, data were gathered from six distinct forest communities.

View Article and Find Full Text PDF

Tree-ring width chronologies of Du Tour from near the upper treeline in the Western Sayan, Southern Siberia are found to have an exceptional (below mean-3SD) multi-year drop near 1700 CE, highlighted by the seven narrowest-ring years in a 1524-2022 regional chronology occurring in the short span of one decade. Tree rings are sometimes applied to reconstruct seasonal air temperatures; therefore, it is important to identify other factors that may have contributed to the growth suppression. The spatiotemporal scope of the "nosedive" in tree growth is investigated with a large network of (14 sites) and Ledeb.

View Article and Find Full Text PDF

In the Mediterranean basin, urban forests are widely recognized as essential landscape components, playing a key role in nature-based solutions by enhancing environmental quality and providing a range of ecosystem services. The selection of woody plant species for afforestation and reforestation should prioritize native species that align with the biogeographical and ecological characteristics of the planting sites. Among these, L.

View Article and Find Full Text PDF

Lignin Metabolism Is Crucial in the Plant Responses to (Shen) in L.

Plants (Basel)

January 2025

Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.

(Shen) (Hemiptera: Cicadellidae) is a devastating insect pest species of , significantly affecting the yield and quality of tea. Due to growing concerns over the irrational use of insecticides and associated food safety, it is crucial to better understand the innate resistance mechanism of tea trees to . This study aims to explore the responses of tea trees to different levels of infestation.

View Article and Find Full Text PDF

Intercropping with legume forages is recognized as an effective strategy for enhancing nitrogen levels in agroforestry, while mowing may influence nitrogen fixation capacity and yield. This study investigated the rooting, nitrogen fixation, nutritive value, and yield of alfalfa ( L.) under intercropping and varying mowing frequencies (CK, 2, and 3) from 2021 to 2023, using walnut ( L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!