Tumour-associated macrophages (TAMs) are involved in cancer progression and drug resistance in the tumour microenvironment (TME). Consequently, macrophages as therapeutic targets have garnered increased attention; however, there are hurdles to screening interactions between cancer and macrophages owing to technical difficulties in recapitulatingphysiological systems. In this study, we propose a simple strategy to construct tumour spheroids with induced M2 macrophage polarization for anticancer drug screening. We observed that cytokine expression related to the TME in three-dimensional (3D) cancer spheroids was enhanced compared with that in two-dimensional conventional cancer cell cultures. We also demonstrated that the 3D breast tumour spheroids promote M2-like TAM polarization via granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor. Furthermore, adipose tissue-derived stem cells, an abundant stromal cell population in the breast cancer TME, further enhanced the M2 phenotype in thetumour spheroids. Therefore, we propose the tumour spheroids as a drug screening platform to evaluate drug efficacy in cancers. Overall, the simple strategy to form tumour spheroids developed in this study will broaden the understanding of communication between cancer cells and macrophages and contribute to the evaluation of cancers and the development of better strategies for their therapy and management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1748-605X/ac956c | DOI Listing |
Breast Cancer Res Treat
January 2025
Department of Oncology, University of Torino, Via Nizza 44, 10126, Turin, Italy.
Anal Chim Acta
January 2025
Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo. C/ Julián Clavería 8, 33006, Oviedo, Spain; Health Research Institute of Asturias (ISPA), Avda de Roma s/n, 33011, Oviedo, Spain. Electronic address:
Background: 3D cellular structures have been considered the following step in the evaluation of drugs penetration after 2D cultures since they are more physiologically representative in cancer cell biology. Here the penetration capabilities of Pt (IV)-loaded ultrasmall iron oxide nanoparticles in 143B osteosarcoma multicellular spheroids of different sizes is conducted by a multidimensional quantitative approach. Single cell (SC) and imaging techniques (laser ablation, LA) coupled to inductively coupled plasma-mass spectrometry (ICP-MS) are used to visualize their penetration pathways and distribution in comparison to those of cisplatin.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Institute of Health Sciences, Collegium Medicum, University of Zielona Góra, Zyty 28 St., Zielona Góra 65-046, Poland. Electronic address:
This study explores the mechanisms underlying chemotherapy resistance in ovarian cancer (OC) using doxorubicin (DOX) and topotecan (TOP)-resistant cell lines derived from the drug-sensitive A2780 ovarian cancer cell line. Both two-dimensional (2D) monolayer cell cultures and three-dimensional (3D) spheroid models were employed to examine the differential drug responses in these environments. The results revealed that 3D spheroids demonstrated significantly higher resistance to DOX and TOP than 2D cultures, suggesting a closer mimicry of in vivo tumour conditions.
View Article and Find Full Text PDFCancer Immunol Res
January 2025
Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
Novel therapeutic strategies are needed to improve the efficacy of chimeric antigen receptor (CAR) T cells as a treatment of solid tumors. Multiple tumor microenvironmental factors are thought to contribute to resistance to CAR T-cell therapy in solid tumors, and appropriate model systems to identify and examine these factors using clinically relevant biospecimens are limited. In this study, we examined the activity of B7-H3-directed CAR T cells (B7-H3.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia.
Background: Pharmacological vitamin C (Vit-C), or high-dose Vit-C has recently gained attention as a potential cancer therapeutic. However, the anticancer activity of Vit-C has not been investigated in realistic 3D models of human cancers, especially with respect to breast cancer (BC), and its potential benefits remain under debate. Herein, we investigate the activity and mechanism of action of pharmacological Vit-C on two BC tumor spheroids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!