Studies of the diffusion dynamics of magnetic skyrmions have generated widespread interest in both fundamental physics and spintronics applications. Here we report the magnetic-field-assisted diffusion motion of skyrmions in a microstructured chiral FeGe magnet. We demonstrate the enhancement of diffusion motion of magnetic skyrmions that is manipulated and driven by an oscillatory magnetic field. Further, the directed diffusion of skyrmions is observed when an in-plane field was introduced to break the symmetry of the system. Finally, we demonstrate the application of a magnetic field can induce an arrangements transition of skyrmions assemble in microstructure, that is, from a stiff hexagonal lattice to a weak interactional isotropic state. By using a step-ascended magnetic field we finished the observation of a particle-like diffusive motion for magnetic skyrmions that transport from high-concentration regions to low-concentration regions and the diffusion flux is proportional to the concentration gradient followed Fick's law.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.2c03046 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Physical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.
Materials exhibiting topological transport properties, such as a large topological Hall resistivity, are crucial for next-generation spintronic devices. Here, we report large topological Hall resistivities in epitaxial supermalloy (NiFeMo) thin films with [100] and [111] orientations grown on single-crystal MgO (100) and AlO (0001) substrates, respectively. While X-ray reciprocal maps confirmed the epitaxial growth of the films, X-ray stress analyses revealed large residual strains in the films, inducing tetragonal distortions of the cubic NiFeMo unit cells.
View Article and Find Full Text PDFSci Rep
January 2025
Helmholtz-Zentrum Berlin für Materialien und Energie, 13109, Berlin, Germany.
Incommensurate magnetic phases in chiral cubic crystals are an established source of topological spin textures such as skyrmion and hedgehog lattices, with potential applications in spintronics and information storage. We report a comprehensive small-angle neutron scattering (SANS) study on the B20-type chiral magnet Cr[Formula: see text]Mn[Formula: see text]Ge, exploring its magnetic phase diagram and confirming the stabilization of a skyrmion lattice under low magnetic fields. Our results reveal a helical ground state with a decreasing pitch from 40 to 35 nm upon cooling, and a skyrmion phase stable in applied magnetic fields of 10-30 mT, and over an unusually wide temperature range for chiral magnets of 6 K ([Formula: see text], [Formula: see text] K).
View Article and Find Full Text PDFNat Nanotechnol
January 2025
Bay Area Center for Electron Microscopy, Songshan Lake Materials Laboratory, Dongguan, China.
Skyrmions can form regular arrangements, so-called skyrmion crystals (SkXs). A mode with multiple wavevectors q then describes the arrangement. While magnetic SkXs, which can emerge in the presence of Dzyaloshinskii-Moriya interaction, are well established, polar skyrmion lattices are still elusive.
View Article and Find Full Text PDFACS Nano
January 2025
School of Physical Sciences, National Institute of Science Education and Research, HBNI, Jatni 752050, India.
Topological magnetic skyrmions with helicity state degrees of freedom in centrosymmetric magnets possess great potential for advanced spintronics applications and quantum computing. Till date, the skyrmion study in this class of materials mostly remains focused to collinear ferromagnets with uniaxial magnetic anisotropy. Here, we present a combined theoretical and experimental study on the competing magnetic exchange-induced evolution of noncollinear magnetic ground states and its impact on the skyrmion formation in a series of centrosymmetric hexagonal noncollinear magnets, MnFeCoGe.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, University of Science and Technology Beijing, Beijing, 100083, China.
Magnetic antiskyrmions, the anti-quasiparticles of magnetic skyrmions, possess alternating Bloch- and Néel-type spin spirals, rendering them promising for advanced spintronics-based information storage. To date, antiskyrmions are demonstrated in a few bulk materials featuring anisotropic Dzyaloshinskii-Moriya interactions and a limited number of artificial multilayers. Identifying novel film materials capable of hosting isolated antiskyrmions is critical for memory applications in topological spintronics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!