Rehabilitation is essential for post-stroke body function recovery. Supported by the mirror neuron theory, motor imagery (MI) has been proposed as a potential stroke therapy capable of facilitating the rehabilitation. However, it is often quite difficult to estimate the degree of the participation of patients during traditional MI training as well as difficult to evaluate the efficacy of MI based rehabilitation methods. The goal of this paper is to develop a virtual reality (VR) based MI training system combining electromyography (EMG) based real-time feedback for poststroke rehabilitation, with the immersive scenario of the VR system providing a shooting basketball training for bilateral upper limbs. Through acquiring electroencephalography (EEG) signal, the brain activity in alpha and beta frequency bands was mapped and the correlation analysis could be achieved. Furthermore, EMG data of each patient was collected and calculated as threshold with root-mean-square algorithm for feedback of the performance score of the shooting basketball training in virtual environment. To investigate the feasibility of this newly-built rehabilitation training system, four experiments namely initial assessment experiment, motor imagery (MI), action observation (AO), and combined motor imagery and action observation (MI+AO) were carried out on stroke patients at different recovery stages. The result shows that MI+AO can generate more pronounced event-related desynchronization (ERD) in alpha band compared to other cases and induce relatively obvious ERD in beta band compared to AO, which demonstrates that VR-based observation has ability to facilitate MI training. Furthermore, it has been found that the muscle strength from MI+AO is the highest through the EMG analysis. This proves that the feedback of EMG can be used to quantify patient's training engagement and promote MI training at a certain extent. Hence, by incorporating such an EMG feedback, a VR-based MI training system has the potential to achieve higher efficacy for post-stroke rehabilitation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNSRE.2022.3210258 | DOI Listing |
Cogn Neurodyn
December 2025
School of Computer Science, Hangzhou Dianzi University, Hangzhou, 310018 Zhejiang China.
The increasing adoption of wearable technologies highlights the potential of electroencephalogram (EEG) signals for biometric recognition. However, the intrinsic variability in cross-session EEG data presents substantial challenges in maintaining model stability and reliability. Moreover, the diversity within single-task protocols complicates achieving consistent and generalized model performance.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Mechanical Engineering, College of Engineering, Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia.
Enhancing motor disability assessment and its imagery classification is a significant concern in contemporary medical practice, necessitating reliable solutions to improve patient outcomes. One promising avenue is the use of brain-computer interfaces (BCIs), which establish a direct communication pathway between users and machines. This technology holds the potential to revolutionize human-machine interaction, especially for individuals diagnosed with motor disabilities.
View Article and Find Full Text PDFMed Biol Eng Comput
January 2025
State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing, University, Chongqing, 400044, People's Republic of China.
Selecting channels for motor imagery (MI)-based brain-computer interface (BCI) systems can not only enhance the portability of the systems, but also improve the decoding performance. Hence, we propose a cross-domain-based channel selection (CDCS) approach, which effectively minimizes the number of EEG channels used while maintaining high accuracy in MI recognition. The EEG source imaging (ESI) technique is employed to map scalp EEG into the cortical source domain.
View Article and Find Full Text PDFEntropy (Basel)
December 2024
Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300384, China.
Brain-computer interfaces (BCI) are an effective tool for recognizing motor imagery and have been widely applied in the motor control and assistive operation domains. However, traditional intention-recognition methods face several challenges, such as prolonged training times and limited cross-subject adaptability, which restrict their practical application. This paper proposes an innovative method that combines a lightweight convolutional neural network (CNN) with domain adaptation.
View Article and Find Full Text PDFBrain Sci
January 2025
IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy.
: Parkinson's disease (PD) is a neurodegenerative disorder, characterised by cardinal motor features and a multitude of non-motor manifestations. Among them, cognitive impairment in PD has been recognised as a defined clinical entity, and it might lead to an increased risk of developing dementia. Consequently, the present review aimed to ascertain the available interventions for the training of cognitive abilities in persons with PD (PwPD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!