Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) are the most common referrals in the Inherited Cardiovascular Condition (ICC) Genetics Service. Several issues must be discussed with patients and their families during the genetic consultation session, including the options for genetic testing and cardiovascular surveillance in family members. We developed an ICC registry and performed next-generation-based DNA sequencing for all patients affected by non-syndromic HCM and idiopathic DCM in our joint specialist genetics service. The target gene sequencing panel relied on the Human Phenotype Ontology with 237 genes for HCM (HP:0001639) and 142 genes for DCM (HP:0001644). All subjects were asked to contact their asymptomatic first-degree relatives for genetic counseling regarding their risks and to initiate cardiovascular surveillance and cascade genetic testing. The study was performed from January 1, 2014, to December 31, 2020, and a total of 62 subjects (31-HCM and 31-DCM) were enrolled. The molecular detection frequency was 48.39% (32.26% pathogenic/likely pathogenic, 16.13% variant of uncertain significance or VUS for HCM, and 25.81% (16.13% pathogenic/likely pathogenic, 9.68% VUS) for DCM. The most prevalent gene associated with HCM was MYBPC3. The others identified in this study included ACTN2, MYL2, MYH7, TNNI3, TPM1, and VCL. Among the DCM subjects, variants were detected in two cases with the TTN nonsense variants, while the others were missense and identified in MYH7, DRSP3, MYBPC3, and SCN5A. Following the echocardiogram surveillance and cascade genetic testing in the asymptomatic first-degree relatives, the detection rate of new cases was 8.82% and 6.25% in relatives of HCM and DCM subjects, respectively. Additionally, a new pre-symptomatic relative belonging to an HCM family was identified, although the genomic finding in the affected case was absent. Thus, ICC service is promising for the national healthcare system, aiming to prevent morbidity and mortality in asymptomatic family members.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9514623 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0267770 | PLOS |
BMC Plant Biol
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
Background: Organic fertilizers are safer and more eco-friendly than chemical fertilizers; hence, organic fertilizers can be used to support sustainable farming. The effects of PGPRs are manifold in agriculture, especially in monoculture crops, where the soil needs to be modified to increase germination, yield, and disease resistance. The objective of this study was to assess the effects of PGPRs combined with fertilizer on the yield and productivity of canola.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
Background: One of the main issues facing public health with microbial infections is antibiotic resistance. Nanoparticles (NPs) are among the best alternatives to overcome this issue. Silver nanoparticle (AgNPs) preparations are widely applied to treat multidrug-resistant pathogens.
View Article and Find Full Text PDFNat Food
January 2025
School of Biological Sciences, University of Aberdeen, Aberdeen, UK.
Nutritional epidemiology aims to link dietary exposures to chronic disease, but the instruments for evaluating dietary intake are inaccurate. One way to identify unreliable data and the sources of errors is to compare estimated intakes with the total energy expenditure (TEE). In this study, we used the International Atomic Energy Agency Doubly Labeled Water Database to derive a predictive equation for TEE using 6,497 measures of TEE in individuals aged 4 to 96 years.
View Article and Find Full Text PDFNat Genet
January 2025
Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Members of the KMT2C/D-KDM6A complex are recurrently mutated in urothelial carcinoma and in histologically normal urothelium. Here, using genetically engineered mouse models, we demonstrate that Kmt2c/d knockout in the urothelium led to impaired differentiation, augmented responses to growth and inflammatory stimuli and sensitization to oncogenic transformation by carcinogen and oncogenes. Mechanistically, KMT2D localized to active enhancers and CpG-poor promoters that preferentially regulate the urothelial lineage program and Kmt2c/d knockout led to diminished H3K4me1, H3K27ac and nascent RNA transcription at these sites, which leads to impaired differentiation.
View Article and Find Full Text PDFNat Chem Biol
January 2025
Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
Cell-free systems are powerful synthetic biology technologies that can recapitulate gene expression and sensing without the complications of living cells. Cell-free systems can perform more advanced functions when genetic circuits are incorporated. Here we expand cell-free biosensing by engineering a highly specific isothermal amplification circuit called polymerase strand recycling (PSR), which leverages T7 RNA polymerase off-target transcription to recycle nucleic acid inputs within DNA strand displacement circuits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!