The ubiquitous hypoxic microenvironment at the tumor site helps to regulate hypoxic inducible factor (HIF-1α), up-regulate downstream CD73-adenosine (CD73-ADO) pathways, and further result in effector T cell function exhaustion, which is regarded as a crucial adverse factor in the poor clinical efficacy of immune checkpoint blockade therapy (ICB). How to reshape hypoxic microenvironment and silence CD73 remains a huge challenge to improve ICB therapeutic outcomes. In this study, cancer cell membrane-camouflaged gelatin nanoparticles (CSG@B16F10) were designed to co-deliver oxygen-generating agent catalase (CAT) and CD73siRNA, thus enhancing tumor oxygenation and alleviating CD73-ADO pathway-mediated T cell immunosuppression. The fabricated biomimetic nanoparticles could efficiently achieve immune evading and homologous targeting by virtue of the retention of cancer cell membrane protein. Matrix metalloproteinases (MMP)-responsive gelatin nanoparticles were gradually disintegrated to accelerate the release of payloads. Rapidly released CAT was found to relieve tumor hypoxia by generating endogenous oxygen, while CD73siRNA effectively silenced target gene, synergically inhibiting CD73 protein expression and facilitating T-cell-specific immunity. Upon introduction of CSG@B16F10 in melanoma-bearing mice, PD-L1 checkpoint blockade achieved optimal tumor suppression (∼83%). The enhanced immune efficacy was mainly manifested by enhanced cytotoxic T cell (CTL), reduced regulatory T cells (Tregs), and increased anti-tumor cytokine secretion. This work presents a new paradigm for the ideal design of biomimetic nanoplatforms and the synergistic treatment of hypoxia alleviation and CD73 silence, greatly promising for enhancing clinical immune potency of PD-1/PD-L1 immune checkpoint blockade.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2022.09.029 | DOI Listing |
J Immunother Cancer
January 2025
Center for Translational Research in Hematologic Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas, USA
Background: Cancer immunotherapy using immune checkpoint blockade (ICB) has revolutionized cancer treatment. However, patients with multiple myeloma (MM) rarely respond to ICB. Accumulating evidence indicates that the complicated tumor microenvironment (TME) significantly impacts the efficacy of ICB therapy.
View Article and Find Full Text PDFAnn Oncol
January 2025
Drug Development Department (DITEP), Gustave Roussy, Villejuif; Faculty of Medicine, Paris Saclay University, Le Kremlin Bicêtre; Institut National de La Santé Et de La Recherche Médicale (INSERM), U1015 & CIC1428, Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), Villejuif, France.
Curr Cancer Drug Targets
January 2025
Division of Pharmacology, Guru Nanak Institute of Pharmaceutical Science and Technology, Kolkata, 700114, India.
Immune checkpoint blockade (ICB) has fundamentally transformed cancer treat-ment by unlocking the potency of CD8+ T cells by targeting the suppression of the CTLA-4 and PD-1/PD-L1 pathways. Nevertheless, ICBs are associated with the risk of severe side effects and resistance in certain patients, driving the search for novel and safer immune check-point modulators. Monoamine Oxidase A (MAO-A) plays an unexpected role in the field of cancer.
View Article and Find Full Text PDFClin Transl Med
January 2025
Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
Background: Immunotherapy is beneficial for some colorectal cancer (CRC) patients, but immunosuppressive networks limit its effectiveness. Cancer-associatedfibroblasts (CAFs) are significant in immune escape and resistance toimmunotherapy, emphasizing the urgent need for new treatment strategies.
Methods: Flow cytometric, Western blotting, proteomics analysis, analysis of public database data, genetically modified cell line models, T cell coculture, crystal violetstaining, ELISA, metabonomic and clinical tumour samples were conducted to assess the role of EDEM3 in immune escape and itsmolecular mechanisms.
Cancer Cell Int
January 2025
Department of Urology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
Background: Tumor microenvironment (TME) plays a crucial role in tumor growth and metastasis. Exploring biomarkers that are significantly associated with TME can help guide individualized treatment of patients.
Methods: We analyzed the expression and survival of P4HB in pan-cancer through the TCGA database, and verified the protein level of P4HB by the HPA database.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!