Peripheral immunological tolerance is mainly maintained by regulatory T (Treg) cells, a specific CD4 T cells subset that expresses the transcription factor Foxp3. Treg cells are crucial to control autoimmunity and inflammation and to limit tissue destruction arising from inflammatory responses. Loss of functions mutations in FOXP3 in humans induces a fatal autoimmune lymphoproliferative disorder, known as Immune dysregulation, Polyendocrinopathy, Enteropathy, X-linked (IPEX). Specific Treg cell differentiation and activation states have been linked to several human diseases. Indeed, Treg cells play a crucial role in different diseases including colitis, multiple sclerosis, autoimmunity, and infection. Characterization of Treg cell functions and understanding the role of different Treg cell subsets are crucial to the development of novel Treg cell-specific therapeutics for inflammatory diseases. In this phenotype report, we will describe laboratory methods to effectively study and characterize human Treg cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10031414PMC
http://dx.doi.org/10.1002/cyto.a.24692DOI Listing

Publication Analysis

Top Keywords

treg cells
16
treg cell
12
treg
8
cells
6
cphen-016 comprehensive
4
comprehensive phenotyping
4
phenotyping human
4
human regulatory
4
regulatory cells
4
cells peripheral
4

Similar Publications

Lung-targeted delivery of PTEN mRNA combined with anti-PD-1-mediated immunotherapy for In Situ lung cancer treatment.

Acta Biomater

January 2025

College of Chemistry, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China. Electronic address:

mRNA-based protein replacement therapy has become one of the most widely applied forms of mRNA therapy, with lipid nanoparticles (LNPs) being extensively studied as efficient delivery platforms for mRNA. However, existing LNPs tend to accumulate in the liver or kidneys after intravenous injection, highlighting the need to develop vectors capable of targeting specific organs. In this study, we synthesized a small library of ionizable lipids and identified PPz-2R as a promising candidate, exhibiting lung-targeting capabilities, high mRNA transfection efficiency, and good stability through structure-activity relationship studies.

View Article and Find Full Text PDF

TGF-beta plays dual roles in immunity and pathogenesis in leishmaniasis.

Cytokine

January 2025

Department of Molecular Biology and Bioinformatics, Tripura University, Agartala, India. Electronic address:

Transforming growth factor-beta (TGF-β), displaying a dual role in immunosuppression and pathogenesis, has emerged as a key regulator of anti-leishmanial immune responses. In Leishmania infections, TGF-β drives immune deviation by enhancing regulatory T-cell (T-reg) differentiation and inhibiting macrophage activation, suppressing critical antiparasitic responses. This cytokine simultaneously promotes fibroblast proliferation, extracellular matrix production, and fibrosis in infected tissues, which aids in wound healing but impedes immune cell infiltration, particularly in visceral leishmaniasis, where splenic disorganization and compromised immune access are notable.

View Article and Find Full Text PDF

Tofacitinib Treatment for Active Dermatomyositis and Anti-synthetase Syndrome: A Prospective Cohort Pilot Study.

Rheumatology (Oxford)

January 2025

Department of Rheumatology and Immunology and Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, 100044, China.

Objectives: The objective of this study was to evaluate the efficacy and safety of tofacitinib in the treatment of active dermatomyositis (DM) and anti-synthetase syndrome (ASS).

Methods: Tofacitinib was administered at a dose of 5 mg twice daily to patients who exhibited inadequate response to conventional treatments. The primary end point was the reduction of T follicular helper (Tfh) cells at week 24.

View Article and Find Full Text PDF

tRNA m1A modification regulates cholesterol biosynthesis to promote antitumor immunity of CD8+ T cells.

J Exp Med

March 2025

Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Activation of CD8+ T cells necessitates rapid metabolic reprogramming to fulfill the substantial biosynthetic demands of effector functions. However, the posttranscriptional mechanisms underpinning this process remain obscure. The transfer RNA (tRNA) N1-methyladenine (m1A) modification, essential for tRNA stability and protein translation, has an undefined physiological function in CD8+ T cells, particularly in antitumor responses.

View Article and Find Full Text PDF

Our understanding of the meningeal immune system has recently burgeoned, particularly regarding how innate and adaptive effector cells are mobilized to meet brain challenges. However, information on how meningeal immunocytes guard brain homeostasis in healthy individuals remains limited. This study highlights the heterogeneous, polyfunctional regulatory T cell (T) compartment in the meninges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!