[Expression of HIV-1 Reverse Transcriptase in Murine Cancer Cells Increases Mitochondrial Respiration].

Mol Biol (Mosk)

Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences (Institute of Poliomyelitis), Moscow, 108819 Russia.

Published: September 2022

AI Article Synopsis

Article Abstract

Changes in metabolic pathways are often associated with the development of a wide range of pathologies. Increased glycolysis under conditions of sufficient tissue oxygen supply and its dissociation from the Krebs cycle, known as aerobic glycolysis or the Warburg effect, is a hallmark of many malignant neoplasms. Identification of specific metabolic shifts can characterize the metabolic programming of individual types of tumor cells, the stage of their transformation, and predict their metastatic potential. Viral infection can also alter the metabolism of cells to support the process of viral replication. Infection with human immunodeficiency virus type 1 (HIV-1) is associated with an increased incidence of various cancers, and for some viral proteins a direct oncogenic effect was demonstrated. In particular, we showed that the expression of HIV-1 reverse transcriptase (RT) in 4T1 breast adenocarcinoma cells increases the tumorigenic and metastatic potential of cells in vitro and in vivo by a mechanism associated with the ability of RT to induce reactive oxygen species in cells (ROS). The aim of this work was to study the molecular mechanism of this process, namely the effect of HIV-1 RT on the key metabolic pathways associated with tumor progression: glycolysis and mitochondrial respiration. Expression of HIV-1 RT had no effect on the glycolysis process. At the same time, it led to an increase in mitochondrial respiration and the level of ATP synthesis in the cell, while not affecting the availability of the substrates, carbon donors for the Krebs cycle, which excludes the effect of RT on the metabolic enzymes of cells. Increased mitochondrial respiration was associated with restoration of the mitochondrial network despite the RT-induced reduction in mitochondrial mass. Increased mitochondrial respiration may increase cell motility, which explains their increased tumorigenicity and metastatic potential. These data are important for understanding the pathogenesis of HIV-1 infection, including the stimulation of the formation and spread of HIV-1 associated malignancies.

Download full-text PDF

Source
http://dx.doi.org/10.31857/S0026898422050160DOI Listing

Publication Analysis

Top Keywords

mitochondrial respiration
16
metastatic potential
12
hiv-1 reverse
8
reverse transcriptase
8
cells increases
8
metabolic pathways
8
pathways associated
8
krebs cycle
8
hiv-1 associated
8
expression hiv-1
8

Similar Publications

Programmed neurite degeneration in human central nervous system neurons driven by changes in NAD metabolism.

Cell Death Dis

January 2025

In vitro Toxicology and Biomedicine, Dept. inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457, Konstanz, Germany.

Neurite degeneration (ND) precedes cell death in many neurodegenerative diseases. However, it remains unclear how this compartmentalized cell death process is orchestrated in the central nervous system (CNS). The establishment of a CNS axotomy model (using modified 3D LUHMES cultures) allowed us to study metabolic control of ND in human midbrain-derived neurons without the use of toxicants or other direct disturbance of cellular metabolism.

View Article and Find Full Text PDF

MnSOD non-acetylation mimic knock-in mice exhibit dilated cardiomyopathy.

Free Radic Biol Med

January 2025

Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, TX, USA. Electronic address:

Manganese superoxide dismutase (MnSOD/SOD2) is an essential mitochondrial enzyme that detoxifies superoxide radicals generated during oxidative respiration. MnSOD/SOD2 lysine 68 acetylation (K68-Ac) is an important post-translational modification (PTM) that regulates enzymatic activity, responding to nutrient status or oxidative stress, and elevated levels have been associated with human illness. To determine the in vivo role of MnSOD-K68 in the heart, we used a whole-body non-acetylation mimic mutant (MnSOD) knock-in mouse.

View Article and Find Full Text PDF

Sengers Syndrome (SS) is a rare autosomal recessive mitochondrial disorder caused by mutations in the acylglycerol kinase (AGK) gene on chromosome 7, also known as cardiomyopathic mitochondrial DNA depletion syndrome (MTDPS10). This disorder disrupts mitochondrial DNA function and energy metabolism, presenting with symptoms such as congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy, exercise intolerance, and lactic acidosis. Previous research has shown SS affects oxidative phosphorylation and mitochondrial respiration, implicating the TIM22 complex and carrier import.

View Article and Find Full Text PDF

Introduction: It has been reported that even with the same body mass index (BMI), there are subjects with metabolically healthy or unhealthy phenotype. The main determinants of the unhealthy phenotype are the type and distribution of fat, ectopic fat accumulation, genetics, and lifestyle factors. Uncoupling proteins (UCPs) disengage mitochondrial respiration from ATP synthesis and result in heat production, which in turn is related to energy expenditure and, thus, to fat mass accumulation.

View Article and Find Full Text PDF

Assays to Enhance Metabolic Phenotyping in the Kidney.

Am J Physiol Renal Physiol

January 2025

Division of Nephrology and Hypertension, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.

The kidney is highly metabolically active, and injury induces changes in metabolism that can impact repair and fibrosis progression. Changes in expression of metabolism-related genes and proteins provide valuable data, but functional metabolic assays are critical to confirm changes in metabolic activity. Stable isotope metabolomics are the gold standard, but these involve considerable cost and specialized expertise.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!