Counteraction of the origin and distribution of multidrug-resistant pathogens responsible for intra-hospital infections is a worldwide issue in medicine. In this brief review, we discuss the results of our recent investigations, which argue that many antibiotics, along with inactivation of their traditional biochemical targets, can induce oxidative stress (ROS production), thus resulting in increased bactericidal efficiency. As we previously showed, hydrogen sulfide, which is produced in the cells of different pathogens protects them not only against oxidative stress but also against bactericidal antibiotics. Next, we clarified the interplay of oxidative stress, cysteine metabolism, and hydrogen sulfide production. Finally, demonstrated that small molecules, which inhibit a bacterial enzyme involved in hydrogen sulfide production, potentiate bactericidal antibiotics including quinolones, beta-lactams, and aminoglycosides against bacterial pathogens in in vitro and in mouse models of infection. These inhibitors also suppress bacterial tolerance to antibiotics by disrupting the biofilm formation and substantially reducing the number of persister bacteria, which survive the antibiotic treatment. We hypothesise that agents which limit hydrogen sulfide biosynthesis are effective tools to counteract the origin and distribution of multidrug-resistant pathogens.

Download full-text PDF

Source
http://dx.doi.org/10.31857/S0026898422050123DOI Listing

Publication Analysis

Top Keywords

hydrogen sulfide
20
bactericidal antibiotics
12
oxidative stress
12
origin distribution
8
distribution multidrug-resistant
8
multidrug-resistant pathogens
8
sulfide production
8
antibiotics
5
hydrogen
5
sulfide
5

Similar Publications

Volatile sulfur compounds (VSCs) are prevalent human biogases detectable in individuals with periodontal disease; therefore, measuring VSC gases in human breath can yield significant, noninvasive diagnostic information indicative of such diseases. In this study, we developed a gas sensor with selective and enhanced sensing capabilities for VSCs methyl mercaptan and hydrogen sulfide. This sensor comprises a cellulose paper substrate impregnated with 2,2'-dithiobis(5-nitropyridine) and sodium acetate.

View Article and Find Full Text PDF

Ammonia and hydrogen sulfide - new insights into gut microbiota and male infertility through meta-analysis.

Front Cell Infect Microbiol

January 2025

College of Environmental and Life Sciences, Murdoch University, Perth, WA, Australia.

Background: Ammonia (NH) and hydrogen sulfide (HS) are produced during digestion in the human gut, yet the impact of these internally generated gases on male reproduction have received limited attention in scientific research.

Methods: We systematically reviewed 935 scientific publications, spanning from 1947 to 2023, focusing on external or internal NH and/or HS, male infertility, and gut microbiota. Meta-analysis was conducted to evaluate the summary relative risk (RR) and 95% confidence intervals (CIs) of combined studies.

View Article and Find Full Text PDF

Recent advances in the role of gasotransmitters in necroptosis.

Apoptosis

January 2025

Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.

Necroptosis is a finely regulated programmed cell death process involving complex molecular mechanisms and signal transduction networks. Among them, receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like protein are the key molecules regulating this process. In recent years, gasotransmitters such as nitric oxide, carbon monoxide and hydrogen sulfide have been suggested to play a regulatory role in necroptosis.

View Article and Find Full Text PDF

Photocatalytic upcycling of polylactic acid to alanine by sulfur vacancy-rich cadmium sulfide.

Nat Commun

January 2025

Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore.

Photocatalytic conversion has emerged as a promising strategy for harnessing renewable solar energy in the valorization of plastic waste. However, research on the photocatalytic transformation of plastics into valuable nitrogen-containing chemicals remains limited. In this study, we present a visible-light-driven pathway for the conversion of polylactic acid (PLA) into alanine under mild conditions.

View Article and Find Full Text PDF

BiS/BiO(OH) nanorods with internal electric field throughout the entire bulk phase as photoelectrochemical sensing platforms for CYFRA21-1 immunoassay.

Anal Chim Acta

February 2025

Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, 250022, Jinan, PR China; Department of Chemistry, Sungkyunkwan University, 16419, Suwon, Republic of Korea. Electronic address:

Photoelectrochemical (PEC) immunosensors are highly promising tools for monitoring biochemical molecules. Constructing high-performance heterojunctions is a general method to improve the sensitivity of PEC immunosensors. The internal electric field (IEF) formed at the heterojunction interface plays a crucial role in coordinating the separation of photogenerated carriers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!