Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Gasification is an effective technology for the thermal disposal of municipal solid waste (MSW) with lower dioxin emission compared to the prevailing incineration process. Nevertheless, the mechanism of dioxin formation in the reducing atmosphere during the gasification process was seldomly explored. Herein, the effects of the atmosphere, temperature, and chlorine source were systematically investigated in terms of dioxin distribution. With CO and HO as gasification agents, a reducing reaction atmosphere was formed with abundant H which effectively suppressed the generation of C-Cl, contributing to a substantial decrease of dioxin concentration by ∼80% compared to the incineration process. The formation of dioxin was favored at temperatures below 700 °C with its peak concentration achieved at 500 °C. It was unveiled that inorganic chlorine played a dominant role in the reducing atmosphere, with a lower proportion of C-O-C/O-C═O on residual slag compared to an oxidizing atmosphere. Additionally, the generated H reduced the concentration of dioxins by attacking C-Cl and inhibiting the crucial Deacon reaction for dioxin formation, validated by density functional theory calculation. Eventually, the formation route paradigm and the reaction mechanism of dioxin formation from MSW gasification were revealed, facilitating and rationally guiding the control of dioxin emission.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.2c05830 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!