Background: Near-infrared spectroscopy (NIRS) has the potential to be a useful tool for assessing key entomological parameters of malaria-transmitting mosquitoes, including age, infectious status and species identity. However, before NIRS can be reliably used in the field at scale, methods for killing mosquitoes and conserving samples prior to NIRS scanning need to be further optimized. Historically, mosquitoes used in studies have been killed with chloroform, although this approach is not without health hazards and should not be used in human dwellings. For the application of NIRS scanning it is also unclear which mosquito preservation method to use. The aim of the study reported here was to investigate the use of pyrethrum spray, a commercially available insecticide spray in Burkina Faso, for killing mosquitoes METHODS: Laboratory-reared Anopheles gambiae and Anopheles coluzzii were killed using either a pyrethrum insecticide spray routinely used in studies involving indoor mosquito collections (Kaltox Paalga®; Saphyto, Bobo-Dioulasso, Burkina Faso) or chloroform ("gold standard"). Preservative methods were also investigated to determine their impact on NIRS accuracy in predicting the species of laboratory-reared Anopheles and wild-caught mosquito species. After analysis of fresh samples, mosquitoes were stored in 80% ethanol or in silica gel for 2 weeks and re-analyzed by NIRS. In addition, experimentally infected An. coluzzii and wild-caught An. gambiae sensu lato (s.l.) were scanned as fresh samples to determine whether they contained sporozoites, then stored in the preservatives mentioned above for 2 weeks before being re-analyzed.

Results: The difference in the accuracy of NIRS to differentiate between laboratory-reared An. gambiae mosquitoes and An. coluzzii mosquitoes killed with either insecticide (90%) or chloroform (92%) was not substantial. NIRS had an accuracy of 90% in determining mosquito species for mosquitoes killed with chloroform and preserved in ethanol or silica gel. The accuracy was the same when the pyrethrum spray was used to kill mosquitoes followed by preservation in silica gel, but was lower when ethanol was used as a preservative (80%). Regarding infection status, NIRS was able to differentiate between infected and uninfected mosquitoes, with a slightly lower accuracy for both laboratory and wild-caught mosquitoes preserved in silica gel or ethanol.

Conclusions: The results show that NIRS can be used to classify An. gambiae s.l. species killed by pyrethrum spray with no loss of accuracy. This insecticide may have practical advantages over chloroform for the killing of mosquitoes in NIRS analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9513905PMC
http://dx.doi.org/10.1186/s13071-022-05458-6DOI Listing

Publication Analysis

Top Keywords

silica gel
16
mosquitoes
12
killing mosquitoes
12
pyrethrum spray
12
nirs
11
near-infrared spectroscopy
8
nirs scanning
8
killed chloroform
8
insecticide spray
8
burkina faso
8

Similar Publications

Green and High Throughput HPTLC Method for Simultaneous Estimation of Celecoxib and Tramadol Hydrochloride in their Newly Approved Analgesic Combination and Spiked Plasma with Dichromic Green and Blue Assessments.

J Chromatogr B Analyt Technol Biomed Life Sci

December 2024

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia Street, Beside Green Plaza Complex 21648, Alexandria, Egypt.

The FDA "Food and Drug Administration" recently approved a novel co-crystal formulation of Celecoxib (CEX) and Tramadol (TRM) for the treatment of adults suffering from moderate to severe pain in several conditions. This novel combination has advantages over co-administration of the two drugs individually as better patient compliance, synergism and lower therapeutic cost. This work presents the first "High performance Thin Layer Chromatographic" (HPTLC) quantitative analytical technique for CEX and TRM simultaneous assay in bulk, their new dosage form and plasma.

View Article and Find Full Text PDF

Copper-cobalt diatomic bifunctional oxygen electrocatalysts based on three-dimensional porous nitrogen-doped carbon frameworks for high-performance zinc-air batteries.

J Colloid Interface Sci

December 2024

State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, PR China; Engineering Research Center of Ministry of Education for Intelligent Rehabilitation Device and Detection Technology, Hebei University of Technology, Tianjin 300401, PR China; Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, Hebei University of Technology, Tianjin 300401, PR China; School of Mechanical Engineering, Hebei University of Technology, 5340 Xiping Road, Beichen District, Tianjin 300401, PR China. Electronic address:

Transition-metal-loaded carbon-based electrocatalysts are promising alternatives to conventional precious metal electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in high-performance zinc-air batteries. However, efficiently doping transition-metal single atoms onto carbon-based frameworks is a significant challenge. Herein, an improved template-sacrificing method combining a two-step carbonization process is proposed to fabricate Cu/Co diatomic sites coanchored on a three-dimensional nitrogen-doped carbon-based framework.

View Article and Find Full Text PDF

Nanodots of Transition Metal Sulfides, Carbonates, and Oxides Obtained Through Spontaneous Co-Precipitation with Silica.

Nanomaterials (Basel)

December 2024

Material Science, BASF SE, RGA/BM-B007, Carl-Bosch-Str. 38, D-67056 Ludwigshafen, Germany.

The controlled formation and stabilization of nanoparticles is of fundamental relevance for materials science and key to many modern technologies. Common synthetic strategies to arrest growth at small sizes and prevent undesired particle agglomeration often rely on the use of organic additives and require non-aqueous media and/or high temperatures, all of which appear critical with respect to production costs, safety, and sustainability. In the present work, we demonstrate a simple one-pot process in water under ambient conditions that can produce particles of various transition metal carbonates and sulfides with sizes of only a few nanometers embedded in a silica shell, similar to particles derived from more elaborate synthesis routes, like the sol-gel process.

View Article and Find Full Text PDF

The application of nanocomposites based on polyacrylamide hydrogels as well as silica nanoparticles in various tasks related to the petroleum industry has been rapidly developing in the last 10-15 years. Analysis of the literature has shown that the introduction of nanoparticles into hydrogels significantly increases their structural and mechanical characteristics and improves their thermal stability. Nanocomposites based on hydrogels are used in different technological processes of oil production: for conformance control, water shutoff in production wells, and well killing with loss circulation control.

View Article and Find Full Text PDF

This work presents a novel hydrothermally aided sol-gel method for preparation of mesoporous silica nanoparticles (MSNs) with a narrow particle size distribution and varied pore sizes. The method was carried out in alkaline media in presence of polyethylene glycol (PEG) and cetyltrimethylammonium chloride (CTAC) as dual templates and permitted the synthesis of spherical mesoporous silica with a high surface area (1011.42 m/g).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!