Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Ropivacaine is commonly applied for local anesthesia and may cause neurotoxicity. Dexmedetomidine (DEX) exhibits neuroprotective effects on multiple neurological disorders. This study investigated the mechanism of DEX pretreatment in ropivacaine-induced neurotoxicity.
Methods: Mouse hippocampal neuronal cells (HT22) and human neuroblastoma cells (SH-SY5Y) were treated with 0.5 mM, 1 mM, 2.5 mM, and 5 mM ropivacaine. Then the cells were pretreated with different concentrations of DEX (0.01 μM, 0.1 μM, 1 μM, 10 μM, and 100 μM) before ropivacaine treatment. Proliferative activity of cells, lactate dehydrogenase (LDH) release, and apoptosis rate were measured using CCK-8 assay, LDH detection kit, and flow cytometry, respectively. miR-10b-5p and BDNF expressions were determined using RT-qPCR or Western blot. The binding of miR-10b-5p and BDNF was validated using dual-luciferase assay. Functional rescue experiments were conducted to verify the role of miR-10b-5p and BDNF in the protective mechanism of DEX on ropivacaine-induced neurotoxicity.
Results: Treatment of HT22 or SH-SY5Y cells with ropivacaine led to the increased miR-10b-5p expression (about 1.7 times), decreased BDNF expression (about 2.2 times), reduced cell viability (about 2.5 times), elevated intracellular LDH level (about 2.0-2.5 times), and enhanced apoptosis rate (about 3.0-4.0 times). DEX pretreatment relieved ropivacaine-induced neurotoxicity, as evidenced by enhanced cell viability (about 1.7-2.0 times), reduced LDH release (about 1.7-1.8 times), and suppressed apoptosis rate (about 1.8-1.9 times). DEX pretreatment repressed miR-10b-5p expression (about 2.5 times). miR-10b-5p targeted BDNF. miR-10b-5p overexpression or BDNF silencing reversed the protective effect of DEX pretreatment on ropivacaine-induced neurotoxicity, manifested as reduced cell viability (about 1.3-1.6 times), increased intracellular LDH level (about 1.4-1.7 times), and elevated apoptosis rate (about 1.4-1.6 times).
Conclusions: DEX pretreatment elevated BDNF expression by reducing miR-10b-5p expression, thereby alleviating ropivacaine-induced neurotoxicity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9511747 | PMC |
http://dx.doi.org/10.1186/s12871-022-01810-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!