Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
CRISPR/Cas technologies have revolutionized the ability to redesign genomic information and tailor endogenous gene expression. Nevertheless, the discovery and development of new CRISPR/Cas systems has resulted in a lack of clarity surrounding the relative efficacies among these technologies in human cells. This deficit makes the optimal selection of CRISPR/Cas technologies in human cells unnecessarily challenging, which in turn hampers their adoption, and thus ultimately limits their utility. Here, we designed a series of endogenous testbed systems to methodically quantify and compare the genome editing, CRISPRi, and CRISPRa capabilities among 10 different natural and engineered Cas protein variants spanning Type II and Type V CRISPR/Cas families. We show that although all Cas protein variants are capable of genome editing and transcriptional control in human cells, hierarchies exist, particularly for genome editing and CRISPRa applications, wherein Cas9 ≥ Cas12a > Cas12e/Cas12j. Our findings also highlight the utility of our modular testbed platforms to rapidly and systematically quantify the functionality of practically any natural or engineered genomic-targeting Cas protein in human cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9594343 | PMC |
http://dx.doi.org/10.1021/acssynbio.2c00156 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!