Lignin, the most abundant aromatic biopolymer on Earth, is often considered a biorefinery by-product, despite its potential to be valorized into high-added-value chemicals and fuels. In this work, an integrated superstructure-based optimization model was set up and optimized using mixed-integer non-linear programming for the conversion of technical lignin to three main biobased products: aromatic monomers, phenol-formaldehyde resins, and aromatic aldehydes/acids. Several alternative conversion pathways were simultaneously compared to assess the profitability of lignins-based processes by predicting the performance of technologies with different TRL. Upon employing key technologies such as hydrothermal liquefaction, dissolution in solvent, or high-temperature electrolysis, the technical lignins could have a market value of 200 €/t when the market price for aromatic monomers, resins, and vanillin is at least 2.0, 0.8, and 15.0 €/kg, respectively. When lower product selling prices were considered, the aromatic monomers and the resins were not profitable as target products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2022.128004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!