Poor outcomes of peripheral arterial disease stenting are often attributed to the inability of stents to accommodate the complex biomechanics of the flexed lower limb. Abrasion damage caused by rubbing of the stent against the artery wall during limb movement plays a significant role in reconstruction failure but has not been characterized. Our goals were to develop a method of assessing the abrasiveness of peripheral nitinol stents and apply it to several commercial devices. Misago, AbsolutePro, Innova, Zilver, SmartControl, SmartFlex, and Supera stents were deployed inside electrospun nanofibrillar tubes with femoropopliteal artery-mimicking mechanical properties and subjected to cyclic axial compression (25%), bending (90°), and torsion (26°/cm) equivalent to five life-years of severe limb flexions. Abrasion was assessed using an abrasion damage score (ADS, range 1-7) for each deformation mode. Misago produced the least abrasion and no stent fractures (ADS 3). Innova caused small abrasion under compression and torsion but large damage under bending (ADS 7). Supera performed well under bending and compression but caused damage under torsion (ADS 8). AbsolutePro produced significant abrasion under bending and compression but less damage under torsion (ADS 12). Zilver fractured under all three deformations and severely abraded the tube under bending and compression (ADS 15). SmartControl and SmartFlex fractured under all three deformations and produced significant abrasion due to strut penetration (ADS 20 and 21). ADS strongly correlated with clinical 12-month primary patency and target lesion revascularization rates, and the described method of assessing peripheral stent abrasiveness can guide device selection and development. STATEMENT OF SIGNIFICANCE: Poor outcomes of peripheral arterial disease stenting are related to the inability of stents to accommodate the complex biomechanics of the flexed lower limb. Abrasion damage caused by rubbing of the stent against the artery wall during limb movement plays a significant role in reconstruction failure but has not been characterized. Our study presents the first attempt at assessing peripheral stent abrasiveness, and the proposed method is applied to compare the abrasion damage caused by Misago, AbsolutePro, Innova, Zilver, SmartControl, SmartFlex, and Supera peripheral stents using artery-mimicking synthetic tubes and cyclic deformations equivalent to five life-years of severe limb flexions. The abrasion damage caused by stents strongly correlates with their clinical 12-month primary patency and target lesion revascularization rates, and the described methodology can be used as a cost-effective and controlled way of assessing stent performance, which can guide device selection and development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9810438 | PMC |
http://dx.doi.org/10.1016/j.actbio.2022.09.044 | DOI Listing |
Small
January 2025
College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
Superhydrophobic surfaces have attracted tremendous attention due to their intriguing lotus-leaf-like water-repelling phenomenon and wide applications, however, most superhydrophobic coatings are prepared with environmentally unfriendly organic solvents and suffer from poor mechanical strength. To solve these issues, waterborne recoatable superhydrophobic (WRSH) coatings are developed based on a novel self-synthesized water-soluble fluorinated acrylic polymer and hydrophobic modified silica nanoparticles. The trade-off between waterborne and superhydrophobicity is well mediated by protonation and deprotonation of the fluorinated acrylic polymer.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, PR China; Dalian Key Laboratory of Internal Combustion Engine Tribology and Reliability Engineering, Dalian 116026, PR China. Electronic address:
As a global challenge, marine biofouling is causing serious economic losses and adverse ecological impacts. In recent years, a variety of promising and environmentally friendly anti-fouling strategies have emerged, among which the excellent anti-fouling performance of bionic autocrine coatings has been recognized. However, bionic autocrine coatings still suffer from uncontrollable secretion behavior, poor mechanical stability, and poor abrasion resistance.
View Article and Find Full Text PDFJ Endod
January 2025
Department of Endodontics, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, Shandong province, China. Electronic address:
Introduction: Traditional access cavity preparation involves removing the roof of the pulp chamber and smoothing the dentin bulges at the root canal orifice, thereby creating straight-line access. However, this may damage more healthy dental tissue and reduce the tooth's fracture resistance. This case series presents a novel minimally invasive endodontic protocol for one maxillary canine and four mandibular premolars, which required root canal therapy due to labial/buccal cervical decay that caused pulpitis or periapical periodontitis.
View Article and Find Full Text PDFNat Rev Chem
January 2025
Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA.
Catechol-functionalized proteins in mussel holdfasts are essential for underwater adhesion and cohesion and have inspired countless synthetic polymeric materials and devices. However, as catechols are prone to oxidation, long-term performance and stability of these inventions awaits effective antioxidation strategies. In mussels, catechol-mediated interactions are stabilized by 'built-in' homeostatic redox reservoirs that restore catechols oxidized to quinones.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia; Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic. Electronic address:
Tire wear microplastics (TWMs) are continuously generated during driving and are subsequently released into the environment, where they pose potential risks to aquatic organisms. In this study, the effects of untreated, hydrated, and aged (in stream water) TWMs on the growth, root development, photosynthesis, electron transport system (ETS) activity, and energy-rich molecules of duckweed Lemna minor were investigated. The results indicated that untreated and aged TWMs have the most pronounced negative effects on Lemna minor, as evidenced by reduced growth and impaired root development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!