Vancomycin and piperacillin/tazobactam are known to be incompatible. The objectives of the present study were to evaluate the impact of their simultaneous infusion on mass flow rates and particulate load and identify preventive strategies. We assessed both static conditions and a reproduction of an infusion line used in a hospital's critical care unit. A high-performance liquid chromatography/UV diode array system and static and dynamic laser diffraction particle counters were used. The mass flow rates were primarily influenced by the choice of the infusion device and the presence of simulated fluid volume support. Drug incompatibility also appeared to affect vancomycin's mass flow rate, and the dynamic particulate load increased during flow rate changes - especially in the infusion set with a large common volume line and no concomitant simulated fluid volume support. Only discontinuation of the piperacillin/tazobactam infusion was associated with a higher particulate load in the infusion set with a large common volume line and no concomitant simulated fluid volume support. A low common volume line and the use of simulated fluid volume support were associated with smaller fluctuations in the mass flow rate. The clinical risk associated with a higher particulate load must now be assessed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2022.122220 | DOI Listing |
J Phys Chem B
January 2025
Nuclear Waste Disposal Research & Analysis Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States.
Fluid-silica interfaces are ubiquitous in chemistry, occurring in both natural geochemical environments and practical applications ranging from separations to catalysis. Simulations of these interfaces have been, and continue to be, a significant avenue for understanding their behavior. A constraining factor, however, is the availability of accurate force fields.
View Article and Find Full Text PDFHeliyon
January 2025
Institute of Mathematics, Henan Academy of Sciences, Zhengzhou, 450046, China.
This study examines the behavior of the Casson nanofluid bioconvection flow around a spinning disc under various influences, including gyrotactic microorganisms, multiple slips, and thermal radiation. Notably, it accounts for the reversible nature of the flow and incorporates the esterification process. The aim of this study is to investigate the influence of reversible chemical reactions on the flow behavior of a Casson nanofluid in the presence of bioconvective microorganisms over a spinning disc.
View Article and Find Full Text PDFRSC Adv
January 2025
Adolphe Merkle Institute, University of Fribourg 1700 Fribourg Switzerland
β-Carotene (βC), a natural carotenoid, is the most important and effective vitamin A precursor, known also for its antioxidant properties. However, its poor water solubility, chemical instability, and low bioavailability limit its effectiveness as an orally delivered functional nutrient. Nanoparticle encapsulation improves βC's bioaccessibility by enhancing its stability and solubility.
View Article and Find Full Text PDFSci Rep
January 2025
Computational Fluid Dynamics Laboratory, School of Mechanical Engineering, VIT, Vellore, 632014, India.
Stenosis causes the narrowing of arteries due to plaque buildup, which impedes blood flow and affects flow dynamics. This work numerically analyzes flow fluctuations in stenosed arteries under realistic physiological conditions (resting and exercise) and external body acceleration. The artery is inclined at angle , and blood rheology is modeled using a generalized power-law fluid.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
MOE Key Laboratory of Mesoscopic Chemistry, Nanjing University, Nanjing, Jiangsu 210023, China.
Two-phase reactions involving microdroplets have gained significant attention in recent years due to their unique ability to catalyze and accelerate reactions that typically do not occur under standard conditions by leveraging chemical and physical effects at the micrometer-scale interface. In this work we have innovatively developed a scaled-up microdroplet reactor for the efficient resource utilization of CO. The reaction liquid is sprayed in the form of mist ( < 20 μm), facilitating complete contact and reaction with gaseous CO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!