Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The stable nitrite (NO-N) generation and rapid startup of anammox-based process are the main bottlenecks hindering its application in mainstream municipal wastewater treatment. In this study, a Partial-Denitrification (PD) system reducing nitrate (NO-N) to NO-N was rapidly developed within 40 days, using the nitrification/denitrification sludge from wastewater treatment plant. The NO-N to NO-N transformation ratios achieved 80.6 %. Significantly, a fast self-enrichment of anammox bacteria in this system was subsequently obtained, resulting in the successful transformation to an efficient PD/Anammox (PD/A) process after 79-day operation. The total nitrogen removal efficiency increased from 12.4 % to 90.0 % with influent ammonia and nitrate of 45.9 mg N/L and 62.2 mg N/L, corresponding to the anammox activity significantly increasing to 6.0 mgNH-N/g VSS/h without seeding anammox sludge. Abundance of anammox increased from 6.7 × 10 to 2.0 × 10 copies/g dry sludge. High-throughput sequencing results showed that Candidatus Brocadia was the only known anammox genus and accounted for 1.08 % during the PD/A stage. Functional bacteria for PD, assumed to be the Thauera, was enriched from 1.99 % to 60.06 % but decreased to 32.49 % during the improvement of anammox activity. It demonstrated that the PD system with stable NO-N accumulation enabled a rapid self-enrichment of anammox bacteria and sufficient nitrogen removal with ordinary nitrification/denitrification sludge. This provides new insights into the scaling application of anammox by integrating PD with shortened startup periods and improved TN removal efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.158973 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!