The MqsRA toxin-antitoxin system is a component of the Escherichia coli stress response. Free MqsR, a ribonuclease, cleaves mRNAs containing a 5'-GC-3' sequence causing a global shutdown of translation and the cell to enter a state of dormancy. Despite a general understanding of MqsR function, the molecular mechanism(s) by which MqsR binds and cleaves RNA and how one or more of these activities is inhibited by its cognate antitoxin MqsA is still poorly understood. Here, we used NMR spectroscopy coupled with mRNA cleavage assays to identify the molecular mechanism of MqsR substrate recognition and the MqsR residues that are essential for its catalytic activity. We show that MqsR preferentially binds substrates that contain purines in the -2 and -1 position relative to the MqsR consensus cleavage sequence and that two residues of MqsR, Tyr81, and Lys56 are strictly required for mRNA cleavage. We also show that MqsA inhibits MqsR activity by sterically blocking mRNA substrates from binding while leaving the active site fully accessible to mononucleotides. Together, these data identify the residues of MqsR that mediate RNA cleavage and reveal a novel mechanism that regulates MqsR substrate specificity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636575PMC
http://dx.doi.org/10.1016/j.jbc.2022.102535DOI Listing

Publication Analysis

Top Keywords

mqsr
12
antitoxin mqsa
8
mrna cleavage
8
mqsr substrate
8
residues mqsr
8
mqsr noncanonical
4
noncanonical microbial
4
microbial rnase
4
rnase toxin
4
toxin inhibited
4

Similar Publications

Background: Bacterial persisters are non- or slow-growing phenotypic variants that may be responsible for recalcitrance and relapse of persistent infections and antibiotic failure. In Escherichia coli, mqsRA is a well-known type II toxin-antitoxin system associated with persister cell formation. This study aimed to investigate the efficiency of an antisense peptide nucleic acid (PNA) targeting mqsRA in eliminating E.

View Article and Find Full Text PDF

Although toxin/antitoxin (TA) systems are ubiquitous, beyond phage inhibition and mobile element stabilization, their role in host metabolism is obscure. One of the best-characterized TA systems is MqsR/MqsA of , which has been linked previously to protecting gastrointestinal species during the stress it encounters from the bile salt deoxycholate as it colonizes humans. However, some recent whole-population studies have challenged the role of toxins such as MqsR in bacterial physiology since the locus is induced over a hundred-fold during stress, but a phenotype was not found upon its deletion.

View Article and Find Full Text PDF

The MqsRA toxin-antitoxin system is a component of the Escherichia coli stress response. Free MqsR, a ribonuclease, cleaves mRNAs containing a 5'-GC-3' sequence causing a global shutdown of translation and the cell to enter a state of dormancy. Despite a general understanding of MqsR function, the molecular mechanism(s) by which MqsR binds and cleaves RNA and how one or more of these activities is inhibited by its cognate antitoxin MqsA is still poorly understood.

View Article and Find Full Text PDF

Functional analysis of Escherichia coli K12 toxin-antitoxin systems as novel drug targets using a network biology approach.

Microb Pathog

August 2022

Central Research Laboratory, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore, 575018, India; Center for Bioinformatics, Nitte (Deemed to be University), Deralakatte, Mangalore, 575018, India. Electronic address:

Bacterial resistance to various drugs and antibiotics has become a significant issue in the fight against infectious diseases. Due to the presence of diverse toxin-antitoxin (TA) systems, bacteria undergo adaptive metabolic alterations and can tolerate the effects of drugs and antibiotics. Bacterial TA systems are unique and can be therapeutic targets for developing new antimicrobial agents, owing to their ability to influence bacterial fate.

View Article and Find Full Text PDF

Type II toxin-antitoxin (TA) systems are widespread in bacteria and are involved in important cell features, such as cell growth inhibition and antimicrobial tolerance, through the induction of persister cells. Overall, these characteristics are associated with bacterial survival under stress conditions and represent a significant genetic mechanism to be explored for antibacterial molecules. We verified that even though Xylella fastidiosa and Xanthomonas citri subsp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!