Jatrophane diterpenoids from Euphorbia microcarpa (prokh.) krylov with multidrug resistance modulating activity.

Phytochemistry

State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and the Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China. Electronic address:

Published: December 2022

Eight undescribed jatrophane diterpenoids, namely euphomicrophane A-H, together with thirteen known diterpenes were isolated from the whole plant extracts of Euphorbia microcarpa (Prokh.) Krylov. Among them, euphomicrophane C and F were possessed the endo-type core structure that naturally rarely appeared. The structures of the purified undescribed compounds were established by extensive spectroscopic and spectrometric analysis, and the single-crystal X-ray diffraction analysis was used to determine the absolute configuration of euphomicrophane E, elusone A and euphorbesulin G. All the isolates were screened for their reversal abilities on P-glycoprotein-mediated multidrug resistant cancer cell line MCF-7/ADR. Compounds euphomicrophane G-H and 3β,7β,8α,9α,15β-pentaacetoxy-5β-benzoyloxyjatropha-6(17)-11E-dien-14-one were showed potential chemoreversal effect with reversal fold values 18.67, 17.15, and 16.76 at a concentration of 10.0 μM, being equal to or stronger than the positive drug verapamil (16.68).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phytochem.2022.113444DOI Listing

Publication Analysis

Top Keywords

jatrophane diterpenoids
8
euphorbia microcarpa
8
microcarpa prokh
8
prokh krylov
8
diterpenoids euphorbia
4
krylov multidrug
4
multidrug resistance
4
resistance modulating
4
modulating activity
4
activity undescribed
4

Similar Publications

Macrocyclic Diterpenoids from Possessing Activity Towards Autophagic Flux.

Int J Mol Sci

December 2024

State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550014, China.

Euphjatrophanes H-L (-), four new jatrophane-type and one new lathyrane-type diterpenoid, were isolated from , along with eight known diterpenoids (-). Their structures were established on the basis of extensive spectroscopic analysis and X-ray crystallographic experiments. All compounds were subjected to bioactivity evaluation using flow cytometry in autophagic flux assays with HM mCherry-GFP-LC3 cells, the human microglia cells which stably expressed the tandem monomeric mCherry-GFP-tagged LC3.

View Article and Find Full Text PDF

Jatrophane and ingenane diterpenoids with anti-inflammatory activity from Euphorbia esula.

Phytochemistry

April 2025

Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China. Electronic address:

A phytochemical investigation into the plants of Euphorbia esula L. has yielded 19 diterpenoids, comprising 17 jatrophane-type (1-7 and 9-18) and two ingenane-type (8 and 19). The structures of these compounds were elucidated by a combination of spectrum elucidations, quantum chemical calculations, and X-ray single crystal diffraction.

View Article and Find Full Text PDF

Jatrophane diterpenoids from Jatropha curcas with multidrug resistance reversal activity.

Fitoterapia

January 2025

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China. Electronic address:

Nine jatrophane diterpenoids, including six previously undescribed compounds, were extracted and purified from whole plants of Jatropha curcas L. Their structures including absolute configurations were characterized by spectroscopic, quantum chemical Nuclear Magnetic Resonance Spectroscopy, Electronic Circular Dichroism calculation, and Single Crystal X-Ray Diffraction methods. These compounds were evaluated for their ability to reverse multidrug resistance.

View Article and Find Full Text PDF

Promoting endogenous neurogenesis for brain repair is emerging as a promising strategy to mitigate the functional impairments associated with various neurological disorders characterized by neuronal death. Diterpenes featuring tigliane, ingenane, jatrophane and lathyrane skeletons, frequently found in Euphorbia plant species, are known protein kinase C (PKC) activators and exhibit a wide variety of pharmacological properties, including the stimulation of neurogenesis. Microbial transformation of these diterpenes represents a green and sustainable methodology that offers a hitherto little explored approach to obtaining novel derivatives and exploring structure-activity relationships.

View Article and Find Full Text PDF

PCSK9 has been recognized as an efficient target for hyperlipidemia and related cardiovascular/cerebrovascular diseases. However, PCSK9 inhibitors in the clinic are all biological products, and no small molecules are available yet. In the current work, we discovered that the crude extract of () promoted LDL uptake and then obtained 8 new and 12 known jatrophane diterpenoids by activity-guided isolation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!