Model-based identification of vadose zone controls on PFAS mobility under semi-arid climate conditions.

Water Res

CSIRO Land and Water, Wembley, Western Australia 6014, Australia; School of Earth Sciences, University of Western Australia, Crawley, Western Australia 6913, Australia.

Published: October 2022

Contamination through per-and poly-fluoroalkyl substances (PFAS) have occurred globally in soil and groundwater systems at military, airport and industrial sites due to the often decades-long periodic application of firefighting foams. At PFAS contaminated sites, the unsaturated soil horizon often serves as a long-term source for sustained PFAS contamination for both groundwater and surface water runoff. An understanding of the processes controlling future mass loading rates to the saturated zone from these source zones is imperative to design efficient remediation measures. In the present study, hydrochemical data from a site where PFAS transport was observed as a result of the decades-long application of AFFF were used to develop and evaluate conceptual and numerical models that determine PFAS mobility across the vadose zone under realistic field-scale conditions. The simulation results demonstrate that the climate-driven physical flow processes within the vadose zone exert a dominating control on the retention of PFAS. Prolonged periods of evapotranspiration exceeding rainfall under the semi-arid conditions trigger periods of upward flux and evapoconcentration, leading to the observed persistence of PFAS compounds in the upper ca. 2 metres of the vadose zone, despite cessation of AFFF application to soils since more than a decade. Physico-chemical retention mechanisms, namely sorption to the air-water interface (AWI) and sediment surfaces, contribute further to PFAS retention. The simulations demonstrate how PFAS downward transport is effectively confined to short periods following discrete rain events when soils display a high degree of saturation. During these periods, AWI sorption is at a minimum. In addition, high PFAS concentrations measured and simulated below the source zone reduce the effect of the AWI further due to a decrease in surface tension associated with elevated PFAS concentrations. Consequently, time-integrated PFAS migration and retardation illuminates that the field-relevant PFAS transport rates are predominantly controlled by the physical flow processes with a lower relative importance of AWI and sediment sorption adding to PFAS retention.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2022.119096DOI Listing

Publication Analysis

Top Keywords

vadose zone
16
pfas
15
pfas mobility
8
pfas transport
8
physical flow
8
flow processes
8
awi sediment
8
pfas retention
8
pfas concentrations
8
zone
6

Similar Publications

Release of poly- and perfluoroalkyl substances from AFFF-impacted soils: Effects of water saturation in vadose zone soils.

J Contam Hydrol

January 2025

Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, USA. Electronic address:

Soil samples collected from an aqueous film-forming foam (AFFF)-impacted sandy soil formation at two depth intervals above the water table were used in bench-scale column experiments to evaluate the release of poly- and perfluoroalkyl substances (PFASs) under different degrees of water saturation. Artificial rainwater was applied to the soils under constant and variably saturated conditions. Results from constant saturation experiments suggest that retention of PFAS mass at air-water interfaces was evident in the deep soil (f < 0.

View Article and Find Full Text PDF

The primary approach to assessing monitored natural attenuation (MNA) is currently based on a conceptual model utilizing the total contaminant concentrations, assuming a single aqueous species. However, many contaminants, such as metals and radionuclide - including iodine, can exist in multiple species that behave chemically differently in the environment and can exist simultaneously. For example, radioiodine often occurs concurrently as three major aqueous species: iodide (I), iodate (IO), and organo-I, which undergo distinct attenuation pathways and exhibit markedly different mobility and geochemical behavior.

View Article and Find Full Text PDF

Mine tailing deposits pose a global problem, as they may contain metal contaminants in various geochemical forms and are likely to be leached from the surface into the underlying groundwater, which can result in health and/or environmental risks. Unfortunately, little is currently known regarding the water flow and mass balance related to leaching in the vadose zone as these factors are still difficult to measure at the field scale. A pilot-scale experiment was run in a 1 m instrumented column for 6 months to address this issue.

View Article and Find Full Text PDF

Global Groundwater Carbon Mass Flux and the Myth of Atmospheric Weathering.

Ground Water

January 2025

Seafloor Science Branch, US Naval Research Laboratory, NRL Code 7432, Stennis Space Center, Hancock County, MS, 39529.

Our recent steady-state mass-balance modeling suggests that most global carbonic-acid weathering of silicate rocks occurs in the vadose zone of aquifer systems not on the surface by atmospheric CO. That is, the weathering solute flux is nearly equal to the total global continental riverine carbon flux, signifying little atmospheric weathering by carbonic acid. This finding challenges previous carbon models that utilize silicate weathering as a control of atmospheric CO levels.

View Article and Find Full Text PDF

Vadose zone flushing of fertilizer tracked by isotopes of water and nitrate.

Vadose Zone J

May 2024

Groundwater Characterization and Remediation Division, US Environmental Protection Agency, Ada, Oklahoma, USA.

A substantial fraction of nitrogen (N) fertilizer applied in agricultural systems is not incorporated into crops and moves below the rooting zone as nitrate (NO ). Understanding mechanisms for soil N retention below the rooting zone and leaching to groundwater is essential for our ability to track the fate of added N. We used dual stable isotopes of nitrate ( N-NO and O-NO ) and water ( O-HO and H-HO) to understand the mechanisms driving nitrate leaching at three depths (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!