A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

MCluster-VAEs: An end-to-end variational deep learning-based clustering method for subtype discovery using multi-omics data. | LitMetric

MCluster-VAEs: An end-to-end variational deep learning-based clustering method for subtype discovery using multi-omics data.

Comput Biol Med

Department of Biostatistics Beijing, Peking University School of Public Health, No. 38 Xueyuan Road, Haidian District, Beijing, 100000, China; Peking University Clinical Research Center, No. 38 Xueyuan Road, Haidian District, Beijing, 100000, China. Electronic address:

Published: November 2022

The discovery of cancer subtypes based on unsupervised clustering helps in providing a precise diagnosis, guide treatment, and improve patients' prognoses. Instead of single-omics data, multi-omics data can improve the clustering performance because it obtains a comprehensive landscape for understanding biological systems and mechanisms. However, heterogeneous data from multiple sources raises high complexity and different kinds of noise, which are detrimental to the extraction of clustering information. We propose an end-to-end deep learning based method, called Multi-omics Clustering Variational Autoencoders (MCluster-VAEs), that can extract cluster-friendly representations on multi-omics data. First, a unified network architecture with an attention mechanism was developed for accurately modeling multi-omics data. Then, using a novel objective function built from the Variational Bayes technique, the model was trained to effectively obtain the posterior estimation of the clustering assignments. Compared with 12 other state-of-the-art multi-omics clustering methods, MCluster-VAEs achieved an outstanding performance on benchmark datasets from the TCGA database. On the Pan Cancer dataset, MCluster-VAEs achieved an adjusted Rand index of approximately 0.78 for cancer category recognition, an increase of more than 18% compared with other methods. Furthermore, a survival analysis and clinical parameter enrichment tests conducted on 10 cancer datasets demonstrated that MCluster-VAEs provides comparable and even better results than many common integrative approaches. These results demonstrate that MCluster-VAEs are a powerful new tool for dissecting complex multi-omics relationships and providing new insights for cancer subtype discovery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2022.106085DOI Listing

Publication Analysis

Top Keywords

multi-omics data
16
subtype discovery
8
multi-omics clustering
8
mcluster-vaes achieved
8
clustering
7
multi-omics
7
mcluster-vaes
6
data
6
cancer
5
mcluster-vaes end-to-end
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!