We present a high-throughput method for identifying and characterizing individual nanowires and for automatically designing electrode patterns with high alignment accuracy. Central to our method is an optimized machine-readable, lithographically processable, and multi-scale fiducial marker system─dubbed LithoTag─which provides nanostructure position determination at the nanometer scale. A grid of uniquely defined LithoTag markers patterned across a substrate enables image alignment and mapping in 100% of a set of >9000 scanning electron microscopy (SEM) images (>7 gigapixels). Combining this automated SEM imaging with a computer vision algorithm yields location and property data for individual nanowires. Starting with a random arrangement of individual InAs nanowires with diameters of 30 ± 5 nm on a single chip, we automatically design and fabricate >200 single-nanowire devices. For >75% of devices, the positioning accuracy of the fabricated electrodes is within 2 pixels of the original microscopy image resolution. The presented LithoTag method enables automation of nanodevice processing and is agnostic to microscopy modality and nanostructure type. Such high-throughput experimental methodology coupled with data-extensive science can help overcome the characterization bottleneck and improve the yield of nanodevice fabrication, driving the development and applications of nanostructured materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9706672 | PMC |
http://dx.doi.org/10.1021/acsnano.2c08187 | DOI Listing |
Small Methods
January 2025
School of Electrical and Electronic Engineering Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
Silicon nanowires (Si NWs) have attracted considerable interest owing to their distinctive properties, which render them promising candidates for a wide range of advanced applications in electronics, photonics, energy storage, and sensing. However, challenges in achieving large-scale production, high uniformity, and shape control limit their practical use. This study presents a novel fabrication approach combining nanoimprint lithography, nanotransfer printing, and metal-assisted chemical etching to produce highly uniform and shape-controlled Si NW arrays.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Optoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China.
Biological neural systems seamlessly integrate perception and action, a feat not efficiently replicated in current physically separated designs of neural-imitating electronics. This segregation hinders coordination and functionality within the neuromorphic system. Here, we present a flexible device tailored for neuromorphic computation and muscle actuation.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay Rd., Kowloon, Hong Kong (SAR) 999077, China.
Quantum information science has garnered significant attention due to its potential in solving problems that are beyond the capabilities of classical computations based on integrated circuits. At the heart of quantum information science is the quantum bit or qubit, which is used to carry information. Achieving large-scale and high-fidelity quantum bits requires the optimization of materials with trap-free characteristics and long coherence times.
View Article and Find Full Text PDFBioprocess Biosyst Eng
November 2024
Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
Electric stimulation (ES) is a versatile technique that uses an electric field to manipulate microorganisms individually. Over the past several decades, the capabilities of ES have expanded from bioremediation to the precise motion control of cells and microorganisms. However, there is limited information on the underlying mechanisms, latest advancement and broader microbial applications of ES in various fields, such as the production of extracellular polymers with upgraded properties.
View Article and Find Full Text PDFMolecules
November 2024
State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China.
Multicolor emission and dynamic color tuning with large spectral range are challenging to realize but critically important in many areas of technology and daily life, such as general lighting, display, multicolor detection and multi-band communication. Herein, we report an excitation-power-dependent color-tuning emission from an individual Sn-doped CdS nanowire with a large spectral range and continuous color tuning. Its photoluminescence (PL) spectrum shows a broad trap-state emission band out of Sn dopants, which is superposed by whispering-gallery (WG) microcavity due to the nanostructure size and its structure, besides the CdS band-edge emission.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!