A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting survival in metastatic non-small cell lung cancer patients with poor ECOG-PS: A single-arm prospective study. | LitMetric

Predicting survival in metastatic non-small cell lung cancer patients with poor ECOG-PS: A single-arm prospective study.

Cancer Med

Serviço de Oncologia Clínica, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.

Published: February 2023

Background: Patients with advanced non-small cell lung cancer (NSCLC) are a heterogeneous population with short lifespan. We aimed to develop methods to better differentiate patients whose survival was >90 days.

Methods: We evaluated 83 characteristics of 106 treatment-naïve, stage IV NSCLC patients with Eastern Cooperative Oncology Group Performance Status (ECOG-PS) >1. Automated machine learning was used to select a model and optimize hyperparameters. 100-fold bootstrapping was performed for dimensionality reduction for a second ("lite") model. Performance was measured by C-statistic and accuracy metrics in an out-of-sample validation cohort. The "lite" model was validated on a second independent, prospective cohort (N = 42). Network analysis (NA) was performed to evaluate the differences in centrality and connectivity of features.

Results: The selected method was ExtraTrees Classifier, with C-statistic of 0.82 (p < 0.01) and accuracy of 0.81 (p = 0.01). The "lite" model had 16 variables and obtained C-statistic of 0.84 (p < 0.01) and accuracy of 0.75 (p = 0.039) in the first cohort, and C-statistic of 0.706 (p < 0.01) and accuracy of 0.714 (p < 0.01) in the second cohort. The networks of patients with lower survival were more interconnected. Features related to cachexia, inflammation, and quality of life had statistically different prestige scores in NA.

Conclusions: Machine learning can assist in the prognostic evaluation of advanced NSCLC. The model generated with a reduced number of features showed high accessibility and reasonable metrics. Features related to quality of life, cachexia, and performance status had increased correlation and importance scores, suggesting that they play a role at later disease stages, in line with the biological rationale already described.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9972023PMC
http://dx.doi.org/10.1002/cam4.5254DOI Listing

Publication Analysis

Top Keywords

non-small cell
8
cell lung
8
lung cancer
8
"lite" model
8
predicting survival
4
survival metastatic
4
metastatic non-small
4
patients
4
cancer patients
4
patients poor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!