Lipid-related metabolism during zebrafish embryogenesis under unbalanced copper homeostasis.

Fish Physiol Biochem

College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.

Published: December 2022

Copper (Cu) is an essential trace element, playing an important role in lipid metabolism, and its transporters ATP7A and ATP7B, as Cu-transporting P-type ATPases, are involved in maintaining the Cu homeostasis in cells. Numerous studies in mammals have shown that Cu homeostasis and lipid metabolism are closely related, but studies on the link between the effects of excess Cu, ATP7A, and ATP7B on lipid metabolism during vertebrate embryogenesis are scarce. In this study, zebrafish disease models with Cu overload and ATP7A and ATP7B inactivation, respectively, were used to study the lipid metabolism-related differentially expressed genes (DEGs) which were enriched in the models. The dynamic and spatiotemporal expressions of the DEGs in WTs, atp7a, and atp7b mutants with or without Cu stress were unveiled in this study and they mostly distributed in brain at 24 hpf then in liver and intestine at 96 hpf, suggesting their potential roles in lipid and glycogen metabolism to apply energy for normal development in zebrafish. Meanwhile, the correlation analysis for the DEGs among the three groups unveiled that most of the DEGs were involved in the glyceride metabolism pathway. This is the first report to establish the relationship between atp7a and atp7b with Cu-stimulated intestinal and liver lipid metabolism during fish embryogenesis, and this study will provide a theoretical basis for fish embryonic development and lipid metabolism disorders under unbalanced copper homeostasis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10695-022-01127-8DOI Listing

Publication Analysis

Top Keywords

lipid metabolism
20
atp7a atp7b
20
unbalanced copper
8
copper homeostasis
8
lipid
7
metabolism
7
atp7a
5
atp7b
5
lipid-related metabolism
4
metabolism zebrafish
4

Similar Publications

From Genetic Findings to new Intestinal Molecular Targets in Lipid Metabolism.

Curr Atheroscler Rep

January 2025

Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thorax, F-44000, Nantes, France.

Purpose Of Review: While lipid-lowering therapies demonstrate efficacy, many patients still contend with significant residual risk of atherosclerotic cardiovascular diseases (ASCVD). The intestine plays a pivotal role in regulating circulating lipoproteins levels, thereby exerting influence on ASCVD pathogenesis. This review underscores recent genetic findings from the last six years that delineate new biological pathways and actors in the intestine which regulate lipid-related ASCVD risk.

View Article and Find Full Text PDF

Background: To investigate the effectiveness of different bariatric metabolic surgeries in improving metabolic syndrome indicators in patients.

Methods: A retrospective analysis was conducted on obese patients who underwent laparoscopic sleeve gastrectomy (LSG), laparoscopic sleeve gastrectomy + jejunojejunal bypass (LSG + JJB), and laparoscopic Roux-en-Y gastric bypass (LRYGB). Patients were categorized into groups based on their surgical procedure: LSG (N = 199), LSG + JJB (N = 242), and LRYGB (N = 288).

View Article and Find Full Text PDF

High cadmium (Cd) concentrations pose a threat to aquatic life globally. This study examined the efficiency of adding purslane (Portulaca oleracea L.) leaf powder (PLP) to Oreochromis niloticus diets on Cd's negative effects.

View Article and Find Full Text PDF

Cystic Fibrosis (CF) is a life-threatening hereditary disease resulting from mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene that encodes a chloride channel essential for ion transport in epithelial cells. Mutations in CFTR, notably the prevalent F508del mutation, impair chloride transport, severely affecting the respiratory system and leading to recurrent infections. Recent therapeutic advancements include CFTR modulators such as ETI, a combination of two correctors (Elexacaftor and Tezacaftor) and a potentiator (Ivacaftor), that can improve CFTR function in patients with the F508del mutation.

View Article and Find Full Text PDF

Ferroptosis: A Targetable Vulnerability for Melanoma Treatment.

J Invest Dermatol

January 2025

Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China. Electronic address:

Melanoma is a devastating form of skin cancer characterized by a high mutational burden, limited treatment success, and dismal prognosis. Although immunotherapy and targeted therapies have significantly revolutionized melanoma treatment, the majority of patients fail to achieve durable responses, highlighting the urgent need for novel therapeutic strategies. Ferroptosis, an iron-dependent form of regulated cell death driven by the overwhelming accumulation of lipid peroxides, has emerged as a promising therapeutic approach in preclinical melanoma models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!