Disruption of intestinal integrity and barrier function due to tissue inflammation has negative implications on overall growth and well-being in young pigs. In this study, we investigated the effects of oral gamma-cyclodextrin-encapsulated tributyrin (TBCD) in young pigs experiencing dextran sodium sulfate (DSS)-induced colitis. Pigs (n = 32 boars) were weaned from the sow at postnatal day (PND) 2, allotted to treatment based on the litter of origin and body weight (BW), and reared artificially over a 26-d feeding period. Treatment groups included: 1) nutritionally adequate (control) milk replacer, no DSS (Control n = 8), 2) control milk replacer plus oral DSS (DSS, n = 7), and 3) control diet supplemented with 8.3 g of TBCD per kg of reconstituted milk replacer plus oral DSS (TBCD + DSS, n = 8). Colitis was induced by administering DSS at 1.25 g of DSS/kg BW daily in a reconstituted milk replacer from PND 14-18. Milk replacer and water were provided ad libitum throughout the 26-d study. All the data were analyzed using a one-way ANOVA using the MIXED procedure of SAS. Control and DSS pigs had similar BW throughout the study, while TBCD + DSS pigs exhibited decreased (P < 0.05) BW starting at approximately PND 15. Additionally, average daily gain (ADG) before and after initiation of DSS dosing, along with over the total study duration, was decreased (P < 0.05) in pigs receiving TBCD + DSS compared with the Control. Milk disappearance was decreased (P < 0.05) in TBCD + DSS pigs when compared with Control and DSS groups. Both the concentration and molar ratio of cecal butyrate concentrations were increased (P < 0.05) in TBCD + DSS pigs compared with the Control group. The DSS and TBCD + DSS treatments also increased (P < 0.05) butyrate concentrations in the luminal contents with the proximal colon compared with Control. TBCD + DSS and DSS pigs had increased (P < 0.05) mucosal width in the distal colon compared with Control, thereby indicating heightened intestinal inflammation. Overall, oral supplementation of encapsulated tributyrin increased the concentration of butyrate in the colon, but was unable to mitigate the negative effects of DSS-induced colitis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9671115 | PMC |
http://dx.doi.org/10.1093/jas/skac314 | DOI Listing |
J Anim Sci
November 2022
Department of Animal Sciences, University of Illinois, Urbana, IL, USA.
Disruption of intestinal integrity and barrier function due to tissue inflammation has negative implications on overall growth and well-being in young pigs. In this study, we investigated the effects of oral gamma-cyclodextrin-encapsulated tributyrin (TBCD) in young pigs experiencing dextran sodium sulfate (DSS)-induced colitis. Pigs (n = 32 boars) were weaned from the sow at postnatal day (PND) 2, allotted to treatment based on the litter of origin and body weight (BW), and reared artificially over a 26-d feeding period.
View Article and Find Full Text PDFBiochim Biophys Acta
December 2013
Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark; Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway.
Hereditary mutations in the transforming growth factor beta induced (TGFBI) gene cause phenotypically distinct corneal dystrophies characterized by protein deposition in cornea. We show here that the Arg555Trp mutant of the fourth fasciclin 1 (FAS1-4) domain of the protein (TGFBIp/keratoepithelin/βig-h3), associated with granular corneal dystrophy type 1, is significantly less susceptible to proteolysis by thermolysin and trypsin than the WT domain. High-resolution liquid-state NMR of the WT and Arg555Trp mutant FAS1-4 domains revealed very similar structures except for the region around position 555.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!