A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A nonparametric method for classification trees using grouped covariates. | LitMetric

A nonparametric method for classification trees using grouped covariates.

Biom J

Division of Oncology and Hematology, Department of Medicine, Far Eastern Memorial Hospital, Banciao Dist, New Taipei City, Taiwan ROC.

Published: February 2023

A group of variables are commonly seen in diagnostic medicine when multiple prognostic factors are aggregated into a composite score to represent the risk profile. A model selection method considers these covariates as all-in or all-out types. Model selection procedures for grouped covariates and their applications have thrived in recent years, in part because of the development of genetic research in which gene-gene or gene-environment interactions and regulatory network pathways are considered groups of individual variables. However, little has been discussed on how to utilize grouped covariates to grow a classification tree. In this paper, we propose a nonparametric method to address the selection of split variables for grouped covariates and their following selection of split points. Comprehensive simulations were implemented to show the superiority of our procedures compared to a commonly used recursive partition algorithm. The practical use of our method is demonstrated through a real data analysis that uses a group of prognostic factors to classify the successful mobilization of peripheral blood stem cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9925394PMC
http://dx.doi.org/10.1002/bimj.202100107DOI Listing

Publication Analysis

Top Keywords

grouped covariates
16
nonparametric method
8
prognostic factors
8
model selection
8
selection split
8
covariates
5
method classification
4
classification trees
4
grouped
4
trees grouped
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!