A novel optimization algorithm called hybrid salp swarm algorithm with teaching-learning based optimization (HSSATLBO) is proposed in this paper to solve reliability redundancy allocation problems (RRAP) with nonlinear resource constraints. Salp swarm algorithm (SSA) is one of the newest meta-heuristic algorithms which mimic the swarming behaviour of salps. It is an efficient swarm optimization technique that has been used to solve various kinds of complex optimization problems. However, SSA suffers a slow convergence rate due to its poor exploitation ability. In view of this inadequacy and resulting in a better balance between exploration and exploitation, the proposed hybrid method HSSATLBO has been developed where the searching procedures of SSA are renovated based on the TLBO algorithm. The good global search ability of SSA and fast convergence of TLBO help to maximize the system reliability through the choices of redundancy and component reliability. The performance of the proposed HSSATLBO algorithm has been demonstrated by seven well-known benchmark problems related to reliability optimization that includes series system, complex (bridge) system, series-parallel system, overspeed protection system, convex system, mixed series-parallel system, and large-scale system with dimensions 36, 38, 40, 42 and 50. After illustration, the outcomes of the proposed HSSATLBO are compared with several recently developed competitive meta-heuristic algorithms and also with three improved variants of SSA. Additionally, the HSSATLBO results are statistically investigated with the wilcoxon sign-rank test and multiple comparison test to show the significance of the results. The experimental results suggest that HSSATLBO significantly outperforms other algorithms and has become a remarkable and promising tool for solving RRAP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481865 | PMC |
http://dx.doi.org/10.1007/s10489-021-02862-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!