Although desert plants often establish multiple simultaneous symbiotic associations with various endophytic fungi in their roots, most studies focus on single fungus inoculation. Therefore, combined inoculation of multiple fungi should be applied to simulate natural habitats with the presence of a local microbiome. Here, a pot experiment was conducted to test the synergistic effects between three extremely arid habitat-adapted root endophytes (, and sp.). For that, we compared the effects of single fungus . combined fungi inoculation, on plant morphology and rhizospheric soil microhabitat of desert plant grown under drought and non-sterile soil conditions. The results indicated that fungal inoculation mainly influenced root biomass of , but did not affect the shoot biomass. Both single fungus and combined inoculation decreased plant height (7-17%), but increased stem branching numbers (13-34%). However, fungal inoculation influenced the root length and surface area depending on their species and combinations, with the greatest benefits occurring on inoculation alone and its co-inoculation with sp. (109% and 61%; 54% and 42%). Although and co-inoculations with and sp. also appeared to promote root growth, these inoculations resulted in obvious soil acidification. Despite no observed root growth promotion, sp. associated with its combined inoculations maximally facilitated soil organic carbon accumulation. However, noticeably, combined inoculation of the three species had no significant effects on root length, surface area, and biomass, but promoted rhizospheric fungal diversity and abundance most, with being the dominant fungal group. This indicates the response of plant growth to fungal inoculation may be different from that of the rhizospheric fungal community. Structural equation modeling also demonstrated that fungal inoculation significantly influenced the interactions among the growth of , soil factors, and rhizospheric fungal groups. Our findings suggest that, based on species-specific and combinatorial effects, endophytic fungi enhanced the plant root growth, altered soil nutrients, and facilitated rhizospheric fungal community, possibly contributing to desert plant performance and ecological adaptability. These results will provide the basis for evaluating the potential application of fungal inoculants for developing sustainable management for desert ecosystems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9490189PMC
http://dx.doi.org/10.3389/fpls.2022.933738DOI Listing

Publication Analysis

Top Keywords

fungal inoculation
16
rhizospheric fungal
16
endophytic fungi
12
single fungus
12
combined inoculation
12
inoculation influenced
12
root growth
12
inoculation
10
fungal
10
fungus combined
8

Similar Publications

Vulvovaginal candidiasis (VVC) represents the second cause of vaginal infections in childbearing-age women. It mainly affects the vulva and vagina; however, other organs can be compromised, with consequences that are not well known yet. To evaluate the ability of Candida albicans, inoculated into the vaginal lumen of mice, to migrate to the uterus and ovaries.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is one of the most important etiologies of acute respiratory infections that cause bronchiolitis in children under 5 years of age. Treatments are expensive, no vaccine is available, and this is an important cause of hospitalization. Costimulatory molecules have been reported to be good inducers of antiviral type 1 immune response.

View Article and Find Full Text PDF

Background: Pulmonary tuberculosis (PTB) accounts for 85% of all reported tuberculosis cases globally. Extrapulmonary involvement can occur in isolation or along with a pulmonary focus as in the case of patients with disseminated tuberculosis (TB). EPTB can occur through hematogenous, lymphatic, or localized bacillary dissemination from a primary source, such as PTB and affects the brain, eye, mouth, tongue, lymph nodes of neck, spine, bones, muscles, skin, pleura, pericardium, gastrointestinal, peritoneum and the genitourinary system as primary and/or disseminated disease.

View Article and Find Full Text PDF

The Ralstonia solanacearum Species Complex (RSSC) is the most significant plant pathogen group with a wide host range. It is genetically related but displays distinct biological features, such as restrictive geography occurrence. The RSSC comprises three species: Ralstonia pseudosolanacearum (phylotype I and III), Ralstonia solanacearum (phylotype IIA and IIB), and Ralstonia syzygii (phylotype IV) (Fegan and Prior 2005).

View Article and Find Full Text PDF

Background: Vaginal colonization by Candida can lead to vulvovaginal candidiasis, which is the second most prevalent vaginal condition globally. It is frequently associated with sepsis and adverse neonatal outcomes in pregnant women. This issue is worsening in Sub-Saharan Africa, including Ethiopia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!