Insight into the Effects of High-Altitude Hypoxic Exposure on Learning and Memory.

Oxid Med Cell Longev

Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 Chang Le West Rd., Xi'an, Shaanxi 710032, China.

Published: September 2022

The earth land area is heterogeneous in terms of elevation; about 45% of its land area belongs to higher elevation with altitude above 500 meters compared to sea level. In most cases, oxygen concentration decreases as altitude increases. Thus, high-altitude hypoxic stress is commonly faced by residents in areas with an average elevation exceeding 2500 meters and those who have just entered the plateau. High-altitude hypoxia significantly affects advanced neurobehaviors including learning and memory (L&M). Hippocampus, the integration center of L&M, could be the most crucial target affected by high-altitude hypoxia exposure. Based on these points, this review thoroughly discussed the relationship between high-altitude hypoxia and L&M impairment, in terms of hippocampal neuron apoptosis and dysfunction, neuronal oxidative stress disorder, neurotransmitters and related receptors, and nerve cell energy metabolism disorder, which is of great significance to find potential targets for medical intervention. Studies illustrate that the mechanism of L&M damaged by high-altitude hypoxia should be further investigated based on the entire review of issues related to this topic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9492407PMC
http://dx.doi.org/10.1155/2022/4163188DOI Listing

Publication Analysis

Top Keywords

high-altitude hypoxia
16
high-altitude hypoxic
8
learning memory
8
land area
8
high-altitude
6
insight effects
4
effects high-altitude
4
hypoxic exposure
4
exposure learning
4
memory earth
4

Similar Publications

The hypoxia-inducible factor (HIF) pathway has been demonstrated to play a pivotal role in the process of high-altitude adaptation. PHD2, a key regulator of the HIF pathway, has been found to be associated with erythropoiesis. However, the relationship between changes in Phd2 abundance and erythroid differentiation under hypoxic conditions remains to be elucidated.

View Article and Find Full Text PDF

South American camelids inhabit high-altitude environments characterized by hypoxia, influencing embryonic, fetal, and placental development. This study examined the term placenta morphology of alpacas (, N = 12) and the immunoexpression of antioxidant selenoproteins (SP). We hypothesize that the placenta of alpacas, adapted to high altitudes, has characteristics with other species also adapted to altitude.

View Article and Find Full Text PDF

In the realm of gene therapy, given the exceptional performance of native exosomes, researchers have redirected their innovative focus towards exosome-mimetic nanovesicles (EMNs); however, the current design of most EMNs relies heavily on native cells or their components, inevitably introducing inter-batch variability issues and posing significant challenges for quality control. To overcome the excessive reliance on native cellular components, this study adopts a unique approach by precisely mimicking the lipid composition of exosomes and innovatively incorporating histone components to recapitulate the gene transfer characteristics of exosomes. We selected sphingomyelin (SM), phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylethanolamine (PE), and cholesterol as the lipid components, and employed the double emulsion method to prepare biomimetic exosomes carrying histone A and PEDF-DNA plasmids (His-pDNA@EMNs).

View Article and Find Full Text PDF

Hypoxia as a medicine.

Sci Transl Med

January 2025

Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.

Oxygen is essential for human life, yet a growing body of preclinical research is demonstrating that chronic continuous hypoxia can be beneficial in models of mitochondrial disease, autoimmunity, ischemia, and aging. This research is revealing exciting new and unexpected facets of oxygen biology, but translating these findings to patients poses major challenges, because hypoxia can be dangerous. Overcoming these barriers will require integrating insights from basic science, high-altitude physiology, clinical medicine, and sports technology.

View Article and Find Full Text PDF

High-altitude adaptation is a remarkable example of natural selection, yet the genomic and physiological adaptation mechanisms of Ethiopian highlanders remain poorly understood compared to their Andean and Tibetan counterparts. Ethiopian populations, such as the Amhara and Oromo, exhibit unique adaptive strategies characterized by moderate hemoglobin levels and enhanced arterial oxygen saturation, indicating distinct mechanisms of coping with chronic hypoxia. This review synthesizes current genomic insights into Ethiopian high-altitude adaptation, identifying key candidate genes involved in hypoxia tolerance and examining the influence of genetic diversity and historical admixture on adaptive responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!