AI Article Synopsis

  • * During the weaning process, reducing pump flow creates a "flow challenge" that shifts blood dynamics, affecting how the heart manages pressure and volume (preload and afterload).
  • * The article suggests using this flow challenge as a method to quantitatively evaluate the heart's ability to function independently, discussing both the hemodynamic details and clinical implications of this test.

Article Abstract

The cardiac function reserve is crucial for the successful weaning of V-A ECMO. During the V-A ECMO weaning phase, the gradual reduction in pump flow converts the blood flow originally driven by the pump to native cardiac output and also transforms afterload (caused by retrograde flow) into ventricular preload, thus introducing a "flow challenge" to the native heart. In this perspective, we propose to use this flow challenge as a test to simulate the preload-to-afterload conversion to assess cardiac functional reserve quantitatively. With this short article we offer the hemodynamic and clinical aspects regarding the flow challenge test.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9493013PMC
http://dx.doi.org/10.3389/fmed.2022.989197DOI Listing

Publication Analysis

Top Keywords

flow challenge
12
challenge test
12
hemodynamic clinical
8
clinical aspects
8
aspects flow
8
v-a ecmo
8
flow
6
weaning venous-arterial
4
venous-arterial extracorporeal
4
extracorporeal membrane
4

Similar Publications

Self-propelled micro/nanomotors (MNMs) represent a groundbreaking advancement in precision drug delivery, offering potential solutions to persistent challenges such as systemic toxicity, limited bioavailability, and nonspecific distribution. By transforming various energy sources into mechanical motion, MNMs are able to autonomously navigate through complex physiological environments, facilitating targeted delivery of therapeutic agents to previously inaccessible regions. However, to achieve efficient in vivo drug delivery, biomedical MNMs must demonstrate their ability to overcome crucial physiological barriers encompassing mucosal surfaces, blood flow dynamics, vascular endothelium, and cellular membrane.

View Article and Find Full Text PDF

Background: Autologous breast reconstruction provides substantial benefits in terms of aesthetics and longevity. However, the risk of flap necrosis poses potential challenges to patients' appearance and psychological well-being, while also escalating health care costs. Consequently, examining the risk factors, assessment techniques, and therapeutic approaches for flap necrosis is critically important.

View Article and Find Full Text PDF

Objective: In recent years, the application of robotic assistance in diagnostic and therapeutic endovascular neurointerventional procedures has gained notable attention. In this systematic review and meta-analysis, we aim to evaluate the feasibility, safety, and current indications of robotic-assisted neurointerventions and to assess the degree of robotic assistance and reasons for unplanned manual conversion from robotic assistance.

Methods: We searched Medline, Scopus, Web of Science, and Cochrane Library databases following PRISMA guidelines and included studies with ≥ 4 patients reporting on robotic-assisted neurointerventions.

View Article and Find Full Text PDF

Schizophrenia (SCZ), bipolar (BD) and major depression disorder (MDD) are severe psychiatric disorders that are challenging to treat, often leading to treatment resistance (TR). It is crucial to develop effective methods to identify and treat patients at risk of TR at an early stage in a personalized manner, considering their biological basis, their clinical and psychosocial characteristics. Effective translation of theoretical knowledge into clinical practice is essential for achieving this goal.

View Article and Find Full Text PDF

Objectives: Blood pressure (BP) management is challenging in patients with acute ischemic supratentorial stroke undergoing recanalization therapy due to the lack of established guidelines. Assessing dynamic cerebral autoregulation (dCA) may address this need, as it is a bedside technique that evaluates the transfer function phase in the very low-frequency (VLF) range (0.02-0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!